首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper applies the thermodynamic analysis with the determining the efficiency of a combined cycle power plant with a chemically recuperated gas turbine. Thermochemical recuperation of exhaust heat after a gas turbine is realized via the steam methane reforming process. The main concept of combined cycle power plant (CCPP) with chemically recuperated gas turbine (CRGT) is based on the use of exhaust heat for endothermic reforming of the original hydrocarbon fuel in a reformer and for steam generation for a steam cycle. To understand the effect of operating variables such as temperature, pressure, and steam-to-methane ratio on the overall efficiency, the energy and mass balances were compiled. The energy flows were represented by a Sankey diagram. The results of the thermodynamic analysis show that efficiency of CCPP with CRGT is significantly higher (4–7%) than efficiency of CCPP with a conventional gas turbine without TCR. Maximum efficiency of CCPP with CRGT of 0.6412 is observed at inlet temperature of working gas of 1600 °C, pressure of 23 bar for a steam-to-methane ratio of 3.0. In the temperature of inlet working gas below 1200 °C the increase in the efficiency of CCPP with TCR is less than 2%.  相似文献   

2.
In this paper, a performance and cost assessment of Integrated Solar Combined Cycle Systems (ISCCSs) based on parabolic troughs using CO2 as heat transfer fluid is reported on. The use of CO2 instead of the more conventional thermal oil as heat transfer fluid allows an increase in the temperature of the heat transfer fluid and thus in solar energy conversion efficiency. In particular, the ISCCS plant considered here was developed on the basis of a triple-pressure, reheated combined cycle power plant rated about 250 MW. Two different solutions for the solar steam generator are considered and compared.The results of the performance assessment show that the solar energy conversion efficiency ranges from 23% to 25% for a CO2 maximum temperature of 550 °C. For a CO2 temperature of 450 °C, solar efficiency decreases by about 1.5–2.0% points. The use of a solar steam generator including only the evaporation section instead of the preheating, evaporation and superheating sections allows the achievement of slightly better conversion efficiencies. However, the adoption of this solution leads to a maximum value of the solar share of around 10% on the ISCCS power output. The solar conversion efficiencies of the ISCCS systems considered here are slightly greater than those of the more conventional Concentrating Solar Power (CSP) systems based on steam cycles (20–23%) and are very similar to the predicted conversion efficiencies of the more advanced direct steam generation solar plants (22–27%).The results of a preliminary cost analysis show that due to the installation of the solar field, the electrical energy production cost for ISCCS power plants increases in comparison to the natural gas combined cycle (NGCC). In particular, the specific cost of electrical energy produced from solar energy is much greater (about two-fold) than that of electrical energy produced from natural gas.  相似文献   

3.
 In this paper, a novel combined cycle with synthetic utilization of coal and natural gas is proposed, in which the burning of coal provides thermal energy to the methane/steam reforming reaction. The syngas fuel, generated by the reforming reaction, is directly provided to the gas turbine as fuel. The reforming process with coal firing has been investigated based on the concept of energy level, and the equations has been derived to disclosing the mechanism of the cascade utilization of chemical energy of natural gas and coal in the reforming process with coal firing. Through the synthetic utilization of natural gas and coal, the exergy destruction of the combustion of syngas is decreased obviously compared with the direct combustion of natural gas and coal. As a result, the overall thermal efficiency of the new cycle reaches 52.9%, as energy supply by methane is about twice as much as these of coal. With the same consumption of natural gas and coal the new cycle can generate about 6% more power than the reference cycles (the combined cycle and the steam power plant). The promising results obtained here provide a new way to utilize natural gas and coal more efficiently and economically by synthetic utilization.  相似文献   

4.
Multi-energy complementary distributed energy system integrated with renewable energy is at the forefront of energy sustainable development and is an important way to achieve energy conservation and emission reduction. A comparative analysis of solid oxide fuel cell (SOFC)-micro gas turbine (MGT)-combined cooling, heating and power (CCHP) systems coupled with two solar methane steam reforming processes is presented in terms of energy, exergy, environmental and economic performances in this paper. The first is to couple with the traditional solar methane steam reforming process. Then the produced hydrogen-rich syngas is directly sent into the SOFC anode to produce electricity. The second is to couple with the medium-temperature solar methane membrane separation and reforming process. The produced pure hydrogen enters the SOFC anode to generate electricity, and the remaining small amount of fuel gas enters the afterburner to increase the exhaust gas enthalpy. Both systems transfer the low-grade solar energy to high-grade hydrogen, and then orderly release energy in the systems. The research results show that the solar thermochemical efficiency, energy efficiency and exergy efficiency of the second system reach 52.20%, 77.97% and 57.29%, respectively, 19.05%, 7.51% and 3.63% higher than those of the first system, respectively. Exergy analysis results indicate that both the solar heat collection process and the SOFC electrochemical process have larger exergy destruction. The levelized cost of products of the first system is about 0.0735$/h that is lower than that of the second system. And these two new systems have less environmental impact, with specific CO2 emissions of 236.98 g/kWh and 249.89 g/kWh, respectively.  相似文献   

5.
Solar redox reforming is a process that uses solar radiation to drive the production of syngas from natural gas. This approach caught attention in recent years, because of substantially lower reduction temperatures compared to other redox cycles. However, a detailed and profound comparison to conventional solar reforming has yet to be performed. We investigate a two-step redox cycle with iron oxide and ceria as candidates for redox materials. Process simulations were performed to study both steam and dry methane reforming. Conventional solar reforming of methane without a redox cycle, i.e. on an established catalyst was used as reference. We found the highest efficiency of a redox cycle to be that of steam methane reforming with iron oxide. Here the solar-to-fuel efficiency is 43.5% at an oxidation temperature of 873 K, a reduction temperature of 1190 K, a pressure of 3 MPa and a solar heat flux of 1000 kW/m2. In terms of efficiency, this process appears to be competitive with the reference process. In addition, production of high purity H2 or CO is a benefit, which redox reforming has over the conventional approach.  相似文献   

6.
Two novel system configurations were proposed for oxy-fuel natural gas turbine systems with integrated steam reforming and CO2 capture and separation. The steam reforming heat is obtained from the available turbine exhaust heat, and the produced syngas is used as fuel with oxygen as the oxidizer. Internal combustion is used, which allows a very high heat input temperature. Moreover, the turbine working fluid can expand down to a vacuum, producing an overall high-pressure ratio. Particular attention was focused on the integration of the turbine exhaust heat recovery with both reforming and steam generation processes, in ways that reduce the heat transfer-related exergy destruction. The systems were thermodynamically simulated, predicting a net energy efficiency of 50–52% (with consideration of the energy needed for oxygen separation), which is higher than the Graz cycle energy efficiency by more than 2 percentage points. The improvement is attributed primarily to a decrease of the exergy change in the combustion and steam generation processes that these novel systems offer. The systems can attain a nearly 100% CO2 capture.  相似文献   

7.
This article deals with comparative energy and exergetic analysis for evaluation of natural gas fired combined cycle power plant and solar concentrator aided (feed water heating and low pressure steam generation options) natural gas fired combined cycle power plant. Heat Transfer analysis of Linear Fresnel reflecting solar concentrator (LFRSC) is used to predict the effect of focal distance and width of reflector upon the reflecting surface area. Performance analysis of LFRSC with energetic and exergetic methods and the effect, of concentration ratio and inlet temperature of the fluid is carried out to determine, overall heat loss coefficient of the circular evacuated tube absorber at different receiver temperatures. An instantaneous increase in power generation capacity of about 10% is observed by substituting solar thermal energy for feed water heater and low pressure steam generation. It is observed that the utilization of solar energy for feed water heating and low pressure steam generation is more effective based on exergetic analysis rather than energetic analysis. Furthermore, for a solar aided feed water heating and low pressure steam generation, it is found that the land area requirement is 7 ha/MW for large scale solar thermal storage system to run the plant for 24 h.  相似文献   

8.
应用天然气重整技术的新型动力系统开拓研究   总被引:1,自引:0,他引:1  
总结概述应用天然气重整反应技术的新型动力系统开拓研究,包括燃料电池及联合循环系统、化学回热燃气轮机循环、太阳能一天然气互补动力系统以及天然气/煤双燃料综合动力系统等。分析归纳天然气蒸汽重整在动力系统应用的新方式,侧重论述天然气蒸汽重整在相关新系统集成中新应用的功能与机理,还分析揭示新系统的特性与性能。  相似文献   

9.
A novel hybrid plant for a mixture of methane and hydrogen (enriched methane) production from a steam reforming reactor whose heat duty is supplied by a molten salt stream heated up by a concentrating solar power (CSP) plant developed by ENEA is here presented. By this way, a hydrogen stream, mixed with natural gas, is produced from solar energy by a consolidated production method as the steam reforming process and by a pre-commercial technology as molten salts parabolic mirrors solar plant. After the hydrogen production plant, the residual heat stored in molten salt stream is used to produce electricity and the plant is co-generative (hydrogen + electricity).The heat-exchanger-shaped reactor is dimensioned by a design tool developed in MatLab environment. A reactor 3.5 m long and with a diameter of 2″ is the most efficient in terms of methane conversion (14.8%) and catalyst efficiency (4.7 Nm3/h of hydrogen produced per kgcat).  相似文献   

10.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

11.
Electron beam plasma methane pyrolysis is a hydrogen production pathway from natural gas without direct CO2 emissions. In this work, two concepts for a technical implementation of the electron beam plasma pyrolysis in a large-scale hydrogen production plant are presented and evaluated in regards of efficiency, economics and carbon footprint. The potential of this technology is identified by an assessment of the results with the benchmark technologies steam methane reforming, steam methane reforming with carbon capture and storage as well as water electrolysis. The techno-economic analysis shows levelized costs of hydrogen for the plasma pyrolysis between 2.55 €/kg H2 and 5.00 €/kg H2 under the current economic framework. Projections for future price developments reveal a significant reduction potential for the hydrogen production costs, which support the profitability of plasma pyrolysis under certain scenarios. In particular, water electrolysis as direct competitor with renewable electricity as energy supply shows a considerably higher specific energy consumption leading to economic advantages of plasma pyrolysis for cost-intensive energy sources and a high degree of utilization. Finally, the carbon footprint assessment indicates the high potential for a reduction of life cycle emissions by electron beam plasma methane pyrolysis (1.9 kg CO2 eq./kg H2 – 6.4 kg CO2 eq./kg H2, depending on the electricity source) compared to state-of-the-art hydrogen production technology (10.8 kg CO2 eq./kg H2).  相似文献   

12.
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions.  相似文献   

13.
In most current fossil-based hydrogen production methods, the thermal energy required by the endothermic processes of hydrogen production cycles is supplied by the combustion of a portion of the same fossil fuel feedstock. This increases the fossil fuel consumption and greenhouse gas emissions. This paper analyzes the thermodynamics of several typical fossil fuel-based hydrogen production methods such as steam methane reforming, coal gasification, methane dissociation, and off-gas reforming, to quantify the potential savings of fossil fuels and CO2 emissions associated with the thermal energy requirement. Then matching the heat quality and quantity by solar thermal energy for different processes is examined. It is concluded that steam generation and superheating by solar energy for the supply of gaseous reactants to the hydrogen production cycles is particularly attractive due to the engineering maturity and simplicity. It is also concluded that steam-methane reforming may have fewer engineering challenges because of its single-phase reaction, if the endothermic reaction enthalpy of syngas production step (CO and H2) of coal gasification and steam methane reforming is provided by solar thermal energy. Various solar thermal energy based reactors are discussed for different types of production cycles as well.  相似文献   

14.
In life cycle assessment (LCA) of solar PV systems, energy pay back time (EPBT) is the commonly used indicator to justify its primary energy use. However, EPBT is a function of competing energy sources with which electricity from solar PV is compared, and amount of electricity generated from the solar PV system which varies with local irradiation and ambient conditions. Therefore, it is more appropriate to use site-specific EPBT for major decision-making in power generation planning. LCA and life cycle cost analysis are performed for a distributed 2.7 kWp grid-connected mono-crystalline solar PV system operating in Singapore. This paper presents various EPBT analyses of the solar PV system with reference to a fuel oil-fired steam turbine and their greenhouse gas (GHG) emissions and costs are also compared. The study reveals that GHG emission from electricity generation from the solar PV system is less than one-fourth that from an oil-fired steam turbine plant and one-half that from a gas-fired combined cycle plant. However, the cost of electricity is about five to seven times higher than that from the oil or gas fired power plant. The environmental uncertainties of the solar PV system are also critically reviewed and presented.  相似文献   

15.
The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx).  相似文献   

16.
A hybrid proton exchange membrane fuel cell (PEMFC) multi-generation system model integrated with solar-assisted methane cracking is established. The whole system mainly consists of a disc type solar Collector, PEMFC, Organic Rankine cycle (ORC). Methane cracking by solar energy to generate hydrogen, which provides both power and heat. The waste heat and hydrogen generated during the reaction are efficiently utilized to generate electricity power through ORC and PEMFC. The mapping relationships between thermodynamic parameters (collector temperature and separation ratio) and economic factors (methane and carbon price) on the hybrid system performance are investigated. The greenhouse gas (GHG) emission reductions and levelized cost of energy (LCOE) are applied to environmental and economic performance evaluation. The results indicate that the exergy utilization factor (EXUF) and energy efficiency of the novel system can reach 21.9% and 34.6%, respectively. The solar-chemical energy conversion efficiency reaches 40.3%. The LCOE is 0.0733 $/kWh when the carbon price is 0.725 $/kg. After operation period, the GHG emission reduction and recovered carbon can reach 4 × 107 g and 14,556 kg, respectively. This novel hybrid system provides a new pathway for the efficient utilization of solar and methane resources and promotes the popularization of PEMFC in zero energy building.  相似文献   

17.
Hydrogen is mostly produced in conventional steam methane reforming plants. In this work, we proposed a membrane‐based reformer‐combustor reactor (MRCR) for hydrogen generation in order to improve heat recovery and overall thermal efficiency. The proposed configuration will also reduce the complexity in existing steam methane reforming (SMR) plants. The proposed MRCR comprises combustion zone, hydrogen permeate zone, and SMR zone. A computational fluid dynamics model was developed using ANSYS‐Fluent software to simulate and analyze the performance of the proposed MRCR. Results show that high hydrogen yields were observed at high reformer pressures (RPs) and low gas hourly space velocities (GHSVs). Furthermore, by increasing the steam to methane ratio and addition of excess air in the combustion side, the hydrogen yield from the MRCR decreases. This is attributed to the reduction in the effective temperature of the hydrogen membrane. High RP, low GHSV, and low steam to methane ratio that increased the hydrogen yield also decreased carbon monoxide (CO) emissions. For an increased RP from 1 to 10 bar, the CO emission decreased by about 99%. The reduction in CO emission at high RP would be attributed to the effect of water gas shift reaction in the MRCR. Results of the extensive parametric study presented in this work can be used to determine the operating conditions based on tradeoffs between hydrogen yield (mole H2/mole CH4), hydrogen production rate (kg of H2/h), allowable CO emissions, and exhaust gas temperature for other applications such as gas turbine.  相似文献   

18.
Small-scale steam methane reforming units produce more than 12% of all the CO2-equivalent emissions from hydrogen production and, unlike large-scale units, are usually not integrated with other processes. In this article, the authors examine the hitherto under-explored potential to utilise the excess heat available in the small-scale steam methane reforming process for partial carbon dioxide capture. Reforming temperature has been identified as a critical operating parameter to affect the amount of excess heat available in the steam methane reforming process. Calculations suggest that reforming the natural gas at 850 °C, rather than 750 °C, increases the amount of excess heat available by about 28.4% (at 180 °C) while, sacrificing about 1.62% and 1.09% in the thermal and exergetic efficiency of the process, respectively. Preliminary calculations suggest that this heat could potentially be utilised for partial carbon capture from reformer flue gas, via structured adsorbents, in a compact capture unit. The reforming temperature can be adjusted in order to regulate the amount of excess heat, and thus the carbon capture rate.  相似文献   

19.
《Energy》2004,29(8):1183-1205
This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection.  相似文献   

20.
Membrane reactors are an innovative technology with huge application potentialities for equilibrium limited endothermic reactions. Assembling a membrane selective to a reaction product avoids the equilibrium conditions to be achieved, supporting the reactions at lower operating temperatures. Taking as an example the natural gas steam reforming, a methane conversion around 98% can be reached imposing an operating temperature of 823 K, much lower than that of the traditional process. In the present paper, a stringent analysis of heat power requirement needed to carry out the natural gas steam reforming process by applying a membrane reactor is made. The simulations allows to understand how the main operating parameters (inlet temperature, inlet methane flow-rate, steam to carbon ratio, ratio between sweeping steam and inlet methane, operating reaction pressure) influence the total heat power required by the process, divided among power contributions for the reaction heat duty, reactant steam and permeation steam generation and preheating. Moreover, the specific thermal energy per mole of pure H2 is computed and assessed. Optimizing the operating conditions set, a specific thermal energy per mole of pure hydrogen of 92.3 kWh kmol−1 is obtained corresponding to a total thermal power of 687.4 kW required to convert, in a single membrane reactor, a methane flow-rate of 2 kmol h−1 (GHSV = 9.590 h−1) with a conversion around 98%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号