首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A copper chloride (CuCl) electrolyzer that constitutes of composite proton exchange membrane (PEM) that functions at medium-temperature (>100 °C) is beneficial for rapid electrochemical kinetics, and better in handling fuel pollutants. A synthesized polybenzimidazole (PBI) composite membrane from the addition of ZrO2 followed with phosphoric acid (PA) is suggested to overcome the main issues in CuCl electrolysis, including the copper diffusion and proton conductivity. PBI/ZrP properties improved significantly with enhanced proton conductivity (3 fold of pristine PBI, 50% of Nafion 117), superior thermal stability (>600 °C), good mechanical strength (85.17 MPa), reasonable Cu permeability (7.9 × 10−7) and high ionic exchange capacity (3.2 × 10−3 mol g−1). Hydrogen produced at 0.5 A cm−2 (115 °C) for PBI/ZrP and Nafion 117 was 3.27 cm3 min−1 and 1.85 cm3 min−1, respectively. The CuCl electrolyzer efficiency was ranging from 91 to 97%, thus proven that the hybrid PBI/ZrP membrane can be a promising and cheaper alternative to Nafion membrane.  相似文献   

2.
Constructing consecutive proton-conducting nanochannels and optimizing nanophase-separation within proton exchange membrane (PEM) was of guiding significance for improving proton transfer. Metal organic framework (MOF), as a novel and functional material had drawn increasing attention in the research of proton PEM because of its flexible tunability and designability. Herein, a novel MOF-based nanofibrous mats (NFMs) were prepared by the self-assembly of zeolitic imidazole framework-67 (ZIF-67) onto polyacrylonitrile (PAN) NFMs. Subsequently, the ZIF-67 NFMs were incorporated into Nafion matrix to prepare ZIF-67@Nafion composite membrane which aimed at constructing consecutive proton-conducting channels. Especially, the acid–base pairs between N–H (ZIF-67 NFMs) and –SO3H (Nafion) could promote the protonation/deprotonation and subsequent proton leaping via Grotthuss mechanisms. As expected, the ZIF-67@Nafion-5 composite membrane showed a promising proton conductivity of 288 mS/cm at 80 °C and 100% RH, low methanol permeability of 7.98 × 10−7 cm2s−1, and superior power density of 298.68 mW/cm2 at 80 °C and 100% RH. In addition, the resulting composite membrane exhibited considerable enhancement in thermal stability and dimensional stability. This promising strategy provided a valuable reference for designing high-performance PEMs.  相似文献   

3.
Composite membranes composed of zirconium phosphate (ZrP) and imidazolium-based ionic liquids (IL), supported on polytetrafluoroethylene (PTFE) were prepared and evaluated for their application in proton exchange membrane fuel cells (PEM) operating at 200 °C. The experimental results reported here demonstrate that the synthesized membrane has a high proton conductivity of 0.07 S cm?1, i.e, 70% of that reported for Nafion. Furthermore, the composite membranes possess a very high proton conductivity of 0.06 S cm?1 when processed at 200 °C under completely anhydrous conditions. Scanning electron microscopy (SEM) images indicate the formation of very small particles, with diameters in the range of 100–300 nm, within the confined pores of PTFE. Thermogravimetric analysis (TGA) reveals a maximum of 20% weight loss up to 500 °C for the synthesized membrane. The increase in proton conductivity is attributed to the creation of multiple proton conducting paths within the membrane matrix. The IL component is acting as a proton bridge. Therefore, these membranes have potential for use in PEM fuel cells operating at temperatures around 200 °C.  相似文献   

4.
Proton exchange membrane is a basic element for any redox flow battery. Nafion is the only commercial available proton exchange membrane used in different electro-chemical energy systems. High cost restrict it's used for energy generation devices. In present work, we synthesised styrene divinylbenzene based composite proton exchange membranes (PEMs) with varying sulfonated graphene oxide (sGO) content for redox flow battery (RFB). Synthesized copolymer PEMs were analyzed in terms of their chemical structure with the help of FT-IR spectroscopy to confirm desired functional groups at appropriate position. Electrochemical characterization was performed in terms proton-exchange capacity, protonic conductivity and water uptake. Membrane shows adequate proton exchange capacity with good proton conductivity. Vanadium ion permeability was also tested for the prepared membrane to assess capability for vanadium redox flow battery (VRFB) in contrast with commercially available Nafion 117 PEM. Higher VO+2 ion cross-over resistance was found for CEM-4 with 7.17 × 10−7 cm2 min−1 permeability, which is about half of the CEM-1. Further CEM-4 was also evaluated for charging-discharging phenomenon for single cell VRFB. The values of columbic, voltage and energy efficiency for VRFB confirms prepared membrane as a good candidate for redox flow battery. Composite PEM also shows better mechanical and thermal stability. Results indicates that synthesized composite membrane can be used in vanadium redox flow battery.  相似文献   

5.
A new multilayered composite membrane was prepared by impregnating a sulfonated poly(arylene ether sulfone) (SPAES) ionomer into a porous polytetrafluoroethylene (PTFE) substrate for application in proton exchange membrane fuel cells (PEMFCs) and water electrolyzers (PEMWEs). The PTFE substrate was treated with n-propyl alcohol to mediate the interfacial interactions between the SPAES solution and PTFE. Using the 10- and 5-μm-thick PTFE substrates, three-layered and five-layered composite membranes were prepared, respectively, to investigate the effect of PTFE thickness on impregnation of the SPAES ionomer. When 5-μm-thick PTFE was applied, the SPAES ionomer was effectively impregnated without noticeable defects, indicating a strong interlocking structure between the two incompatible components. Therefore, the five-layered composite membrane showed enhanced dimensional stability and mechanical properties compared to the SPAES membrane, and the effect of the PTFE on proton conductivity was minimized. Consequently, the cell performances of the five-layered composite membrane were reflected by current densities of 1.71 A/cm2 at 0.5 V and 9.76 A/cm2 at 1.9 V for PEMFC and PEMWE, respectively, corresponding to 44% and 32% increases compared to those of Nafion 212, owing to its smaller membrane resistance. Moreover, the prepared composite membrane presented excellent durability, which resulted in stable wet-dry cyclability and low degradation rates.  相似文献   

6.
This work describes the synthesis and evaluation of nanocomposite membranes based on calcium phosphate (CP)/ionic liquids (ILs) for high-temperature proton exchange membrane (PEM) fuel cells. Several composite membranes were synthesized by varying the mass ratios of ILs with respect to the CP and all supported on porous polytetrafluoroethylene (PTFE). The membranes exhibit high proton conductivities. Two ionic liquids were investigated in this study, namely, 1-Hexyl-3- methylimidazolium tricyanomethanide, [HMIM][C4N3], and 1-Ethyl-3-methylimidazolium methanesulfonate, [EMIM][CH3O3S]. At room temperature, the CP/PTFE/[HMIM][C4N3] composite membrane possessed a high proton conductivity of 0.1 S cm−1. When processed at 200 °C, and fully anhydrous conditions, the membrane showed a conductivity of 3.14 × 10−3 S cm−1. Membranes based on CP/PTFE/[EMIM][CH3O3S] on the other hand, had a maximum proton conductivity of 2.06 × 10−3 S cm−1 at room temperature. The proton conductivities reported in this work appear promising for the application in high-temperature PEMFCs operated above the boiling point of water.  相似文献   

7.
The proton exchange membrane is one of the critical parts of a direct methanol fuel cell. High proton conductivity and low methanol permeability are required. To enhance the performance of a direct methanol fuel cell, graphene oxide was incorporated to Nafion-mordenite composite membranes to enhance the compatibility and to decrease methanol permeability. It was found that the membrane with silane grafted on graphene oxide-treated mordenite with a graphene oxide content of 0.05% presented the highest proton conductivity (0.0560 S·cm−1, 0.0738 S·cm−1 and 0.08645 S·cm−1 at 30, 50, and 70 °C, respectively). This was about 1.6-fold of the recast Nafion and commercial Nafion 117 and was about 1.5-fold of that without graphene oxide incorporation. Finally, the operating condition was optimized using response surface methodology and the maximum power density was investigated. Power density of about 4-fold higher than that of Nafion 117 was obtained in this work at 1.84 M and 72 °C with a %Error between the model prediction and the fuel cell experiment of 0.082%.  相似文献   

8.
In this work, we developed a novel composite membrane by anchoring perfluorosulfonic acid into the hydrophilic poly(lactic-co-glycolic acid) (PLGA) nanofibrous network which was synthesized by electrospinning method. It was clear that the PLGA/Nafion composite membranes possessed high Nafion loading, excellent dimensional stability and proton transport capacity. When the humidity of the membrane changed from soaking in water to 25 RH% at 90 °C, the PLGA fiber network effectively controlled the swelling of Nafion resin and reduced the humidity-generated shrinkage stress from 2.2 MPa (Nafion211 membranes) to 0.5 MPa (PLGA/Nafion composite membranes). The proportion of humidity-induced stress to the yield strength was also reduced to 4.4%, in comparison to 21.2% of that of Nafion211 membrane. The area proton conductivity of the PLGA/Nafion composite membrane achieved 48.2 S cm−2, compared with 36.0 S cm−2 of Nafion211 membranes in the same condition. The excellent proton transport capacity greatly improved the performance of fuel cell assembled with PLGA/Nafion composite membranes and effectively reduced the dynamic response time from 22 s (Nafion211 membranes) to 7 s (PLGA/Nafion composite membranes).  相似文献   

9.
Nafion based proton exchange membrane (PEM) has long been used as conventional PEM in direct methanol fuel cell (DMFC) industry. However, the high cost of Nafion membrane and other drawbacks like high methanol crossover hinder the advancement of this industry. This study aims to develop a low cost membrane using sulfonated poly ether ether ketone (SPEEK) polymer. Silica and silicotungstic acid (SiWA) were incorporated into the membrane matrix using solution casting method. The optimum loading of the additives was tuned and it is discovered that the SPEEK membrane containing 10 wt% of silica and 5 wt% of SiWA has the best performance due to its high proton conductivity and moderately low methanol permeability. The performance of the membrane can further be enhanced by adding (3-aminopropyl)triethoxysilane (APTES) and carbonyldiimidazole (CDI) as coupling agents. Inclusion of APTES and CDI in SPEEK could not only improve the compatibility between organic SPEEK and inorganic additives, but also improve the homogeneity and dispersity of the additives. As a result, the resultant membrane with a better dimensional stability achieves high selectivity (10.60 × 104 S.s/cm3) up to 6.5 times more than pristine SPEEK membrane and 1.3 times higher than the commercial Nafion 117 membrane.  相似文献   

10.
A simple drop-cast method to directly deposit Nafion polymer electrolyte membrane (PEM) on nanostructured thin-film catalyst layer composed of stacked Pt nanoparticles prepared by pulsed laser deposition (PLD) was demonstrated. Through optimization of solvent composition and drying temperature of Nafion solution to control self-organization of Nafion, a uniform PEM with better bulk and interface microstructures could be produced, leading to a significant improvement in the output current density of a PEM fuel cell over that using reference commercial PEMs. The formation of facile proton conduction pathways in the bulk Nafion membrane resulted in a 35% reduction in ohmic resistance compared to that with the commercial membrane. Moreover, the infiltration of Nafion in the catalyst layer formed suitable proton transport network to render more catalyst nanoparticles effective and thus lower charge-transfer resistance. With the optimized PLD, drop-cast, and hot-pressing conditions, the current density of PEMFCs using drop-casted PEM reached 1902 mA cm−2 at 0.6 V at 2 atm H2 and O2 pressures with a cathode Pt loading of 100 μg cm−2, corresponding to a power density of 1.14 W cm−2 and a cathode mass-specific power density of 11.4 kW g−1.  相似文献   

11.
Sulfonated covalent organic nanosheets (SCONs) with a functional group (−SO3H) are effective at reducing ion channels length and facilitating proton diffusion, indicating the potential advantage of SCONs in application for proton exchange membranes (PEMs). In this study, Nafion-SCONs composite membranes were prepared by introducing SCONs into a Nafion membrane. The incorporation of SCONs not only improved proton conductivity, but also suppressed methanol permeability. This was due to the even distribution of ion channels, formed by strong electrostatic interaction between the well dispersed SCONs and Nafion polymer molecules. Notably, Nafion-SCONs-0.6 was the best choice of composite membranes. It exhibited enhanced performance, such as high conductivity and low methanol permeability. The direct methanol fuel cell (DMFC) with Nafion-SCONs-0.6 membrane also showed higher power density (118.2 mW cm−2), which was 44% higher than the cell comprised of Nafion membrane (81.9 mW cm−2) in 2 M methanol at 60 °C. These results enabled us to work on building composite membranes with enhanced properties, made from nanomaterials and polymer molecules.  相似文献   

12.
The inorganic silica immobilized PWA based (Si-PWA)-PVA/PTFE composite membrane was developed by an amalgamation of pore filling and layer by layer (LBL) casting. The composition of the top layer was optimized to be 0.3 M PWA: 0.2 M TEOS: 0.15PVA concerning to proton-conductivity and methanol permeability of the membrane. Surface morphological studies and elemental analysis were carried out by using SEM-EDX. The FT-IR and XRD analysis had confirmed the intercalation of sol with PTFE. Thermal deformation of the membrane was studied by TGA and it is stable up to 180 °C. Ion exchange capacity and water uptake were determined to be 2.38 meq per gram and 21.7%. The membrane has exhibited maximum proton conductivity of 41.2 mS cm−1 at 100 °C. The membrane has significantly lower methanol permeability of 3.2 × 10−7 cm2 S−1 compared to that of Nafion117 (7.9 × 10−7 cm2 S−1) at 28 °C and the same trend was observed at 40, 60, and 80 °C. The (Si-PWA)-PVA/PTFE composite membrane is showed enhanced proton conductivity and lower methanol permeability at elevated temperatures.  相似文献   

13.
The main problem with using membranes in a direct methanol fuel cell is the proton conductivity and methanol permeability that reduces the performance of the membrane. In addition, the cost of the membrane is very high and remains the main issue for the commercialization of Direct Methanol Fuel Cell (DMFC). To solve this problem, this study introduces rice husk ash (RHA) as a bio-filler in sulfonated polyimide (SPI) composite membranes. The bio-filler is expected to reduce the cost of the membrane and at the same time increase the performance of the membrane. In this work, agricultural rice husk waste was subjected to oxidation to produce RHA. The composite membrane displayed maximum values for the ion exchange capacity (0.2829 mmol g−1) and water uptake (55.24%). It was observed that the proton conductivity (0.2058 S cm−1) was higher than that in the pristine SPI membrane. The methanol permeability of the SPI-RHA membranes was reduced to 24 times lower than that of the pristine SPI membrane. In the DMFC passive single-cell test, the maximum power density was increased from 8.0 mW cm−1 to 13.0 mW cm−1 using a composite membrane with 15 wt % RHA. These composite membranes have proven that the addition of RHA enhanced the performances of the fuel cell and have a very high potential to act as an alternative bio-filler for the membranes used in a direct methanol fuel cell.  相似文献   

14.
Synthesis and characterization of nanocomposite membranes for proton exchange membrane fuel cell (PEMFC) operating at different temperatures and humidity were investigated in this study. Recast Nafion composite membrane with ZrO2 and TiO2 nanoparticles with 75 nm in mean size diameter, prepared for PEM fuel cells. Nafion/TiO2 composite membranes have been also fabricated by in-situ sol–gel method. However, fine particles of the ZrO2 were synthesized and Nafion/ZrO2 composite membrane were produced by blending a 5% (w/w) Nafion-water dispersion with the inorganic compound. All nanocomposite membranes demonstrated higher water retention in comparison with unmodified membranes. Proton conductivity increased with increasing ZrO2 content while TiO2 additive (with mean size of 25 nm) enhanced water retention. Subsequently, structures of the membranes were investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) as well as X-Ray Diffraction (XRD). In addition, water uptake and proton conductivity of the modified membranes were also measured. The nanocomposite membrane was tested in a 25 cm2 commercial single cell at the temperature range of 80–110 °C and in humidified H2/O2 under different relative humidity (RH) conditions. The membrane electrode assembly (MEA) prepared from Nafion/TiO2, ZrO2 presented highest PEM fuel cell performance in respect of IV polarization under condition of 110 °C, 0.6 V and 30% RH and 1 atm.  相似文献   

15.
Membrane electrode assemblies with Nafion/nanosize titanium silicon dioxide (TiSiO4) composite membranes were manufactured with a novel ultrasonic-spray technique and tested in proton exchange membrane fuel cell (PEMFC). Nafion/TiO2 and Nafion/SiO2 nanocomposite membranes were also fabricated by the same technique and their characteristics and performances in PEMFC were compared with Nafion/TiSiO4 mixed oxide membrane. The composite membranes have been characterized by thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, water uptake, and proton conductivity. The composite membranes gained good thermal resistance with insertion of inorganic oxides. Uniform and homogeneous distribution of inorganic oxides enhanced crystalline character of these membranes. Gas diffusion electrodes (GDE) were fabricated by Ultrasonic Coating Technique. Catalyst loading was 0.4 mg Pt/cm2 for both anode and cathode sides. Fuel cell performances of Nafion/TiSiO4 composite membrane were better than that of other membranes. The power density obtained at 0.5 V at 75 °C was 0.456 W cm−2, 0.547 W cm−2, 0.477 W cm−2 and 0.803 W cm−2 for Nafion, Nafion/TiO2, Nafion/SiO2, and Nafion/TiSiO4 composite membranes, respectively.  相似文献   

16.
A commercial perfluorinated sulfonic acid (PFSA) membrane, Nafion, shows outstanding conductivity under conditions of a fully humidified surrounding. Nevertheless, the use of Nafion membranes that operate only at low temperature (<100 °C) can lead to some disadvantages in PEMFC systems, such as a low impurity tolerance and slow kinetics. To overcome the above problems, this study introduces a highly durable composite membrane with an inorganic filler for a high-temperature proton exchange membrane fuel cell (HT-PEMFC) applications under anhydrous conditions. In this work, polybenzimidazole (PBI) is used as a polymer electrolyte membrane with the addition of a sulfonated graphene oxide (SGO) inorganic filler. The amount of SGO filler was varied (0.5–6 wt.%) to study its influence on proton conductivity at elevated temperature, mechanical stability as well as phosphoric acid doping level. In particular, PBI-SGO composite membranes exhibited higher the level of acid dopant and proton conductivities than those of the pure PBI membranes. The PBI-SGO 2 wt.% composite membrane displayed the highest proton conductivity, with a value of 9.142 mS cm−1 at 25 °C, and it increased to 29.30 mS cm−1 at 150 °C. The PBI-SGO 2 wt.% also displayed the maximum values in the acid doping level (11.63 mol of PA/PBI repeat unit) and mechanical stability (48.86 MPa) analyses. In the HT-PEMFC test, compared with a pristine PBI membrane, the maximum power density was increased by 40% with the use of a PBI composite membrane with 2 wt.% SGO. These results show that the PBI-SGO membrane has a great potential to be applied as an alternative membrane in HT-PEMFC applications, offering the possibility of improving impurity tolerance and kinetic reactions.  相似文献   

17.
The short-side-chain (SSC) perfluorosulfonic acid (PFSA) membranes are important candidates as membrane electrolytes applied for high temperature or low relative humidity (RH) proton exchange membrane fuel cells. In this paper, the fuel cell performance, proton conductivity, proton mobility, and water vapor absorption of SSC PFSA electrolytes and the reinforced SSC PFSA/PTFE composite membrane are investigated with respect to temperature. The pristine SSC PFSA membrane and reinforced SSC composite membrane show better fuel cell performance and proton conductivity, especially at high temperature and low relative humidity conditions, compared to the long-side-chain (LSC) Nafion membrane. Under the same condition, the proton mobility of SSC PFSA membranes is lower than that of the LSC PFSA membrane. The water vapor uptake values for Nafion 211 membrane, pristine SSC PFSA membrane and SSC PFSA/PTFE composite membrane are 9.62, 11.13, and 11.53 respectively at 40 °C and they increase to 9.89, 12.55 and 13.09 respectively at 120 °C. The high water content of SSC PFSA membrane makes it maintain high performance even at elevated temperatures.  相似文献   

18.
PTFE/Nafion (PN) and PTFE/Nafion/TEOS (PNS) membranes were fabricated for the application of moderate and high temperature proton exchange membrane fuel cells (PEMFCs), respectively. Membrane electrode assemblies (MEAs) were fabricated by PTFE/Nafion (and PTFE/Nafion/TEOS) membranes with commercially available low and high temperature gas diffusion electrodes (GDEs). The effects of relative humidity, operation temperature, and back pressure on the performance and durability test of the as-prepared MEAs were investigated. Incorporating TEOS into a PNS membrane and adding another layer of carbon onto a GDE would result in low membrane conductivity and low fuel cell performance respectively. However, in this work it is shown that HT-PNS MEAs demonstrate a higher performance than LT-PN MEAs in severe conditions - high temperature (118 °C) and low humidity (25% RH). The TEOS and additional carbon layer function as water retaining agents which are especially important for high temperature and low humidity conditions. The HT-PNS MEA showed good stability in a 50 h fuel cell test at high temperature, moderate relative humidity (50% RH) and back pressure of 14.7 psi.  相似文献   

19.
The influence of optimal ultraviolet irradiation of Nafion membranes in enhancing proton conductivity and performance of passive micro-direct methanol fuel cells with silicon micro-flow channels is investigated for the first time. Initially, Nafion membranes are irradiated with different doses of ultraviolet radiation ranging within 0–400 mJ cm−2 and their water uptake, swelling-ratios, porosity, and proton conductivities are measured using standard procedure. Results show that there is an enhancement in proton conductivity with an optimal dose of 198 mJ cm−2 ultraviolet radiation. This enhancement is due to optimum photo-crosslinking of –SO3H species resulting in maximum pore-size which facilitates enhanced proton-hopping from one –SO3H site to another in the hydrophilic channel. Nafion membranes with three different thicknesses (50 μm, 90 μm and 183 μm) are irradiated with ultraviolet radiation with 198 mJ cm−2 dose and passive micro-direct methanol fuel cells are assembled with irradiated Nafion proton exchange membranes. The polarization plots are obtained for the assembled devices. Results show an enhancement of power density of devices nearly by a factor of 1.2–1.5 with optimally irradiated membranes indicating that optimum dose of ultraviolet irradiation of Nafion membranes is an effective technique for power enhancement of proton exchange membrane fuel cells which use fuels like methanol, ethanol and hydrogen.  相似文献   

20.
Organically modified montmorillonites are valuable materials that have been used to improve the permeability, water retention, and proton conductivity of proton exchange membrane for fuel cells. A sulfonated montmorillonite/sulfonated poly (biphenyl ether sulfone)/Polytetrafluoroethylene (SMMT/SPSU-BP/PTFE) composite membrane was prepared for fuel cells. The thermal stability of the SMMT was tested by the thermogravimetry-mass spectrometry (TGA-MS) and its structure in the composite membrane was characterized by X-ray diffraction (XRD). It was found that SMMT was stable up to 205 °C and the interlayer distance of the nanoclay expanded from 1.43 nm to 1.76 nm after the organic sulfonic modification. The SMMT was completely exfoliated in the composite membranes. The properties of ion-exchange capacity, water uptake, swelling ratio, proton conductivity, and mechanical strength of the composite membranes were investigated as well. The good water retention of SMMT made the SMMT/SPSU-BP and SMMT/SPSU-BP/PTFE composite membranes have about 20% more bound water than the SPSU-BP membrane. Due to the reinforce effect of the PTFE porous film, the SMMT/SPSU-BP/PTFE composite membrane presented low swelling even at elevated temperature and high stress strength. All of the properties indicate that the SMMT/SPSU-BP/PTFE composite membrane is very promising as the PEM for medium temperature PEMFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号