首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lean combustion is a standard approach used to reduce NOx emissions in large bore (35–56 cm) stationary natural gas engines. However, at lean operating points, combustion instabilities and misfires give rise to high total hydrocarbon (THC) and carbon monoxide (CO) emissions. To counteract this effect, precombustion chamber (PCC) technology is employed to allow engine operation at an overall lean equivalence ratio while mitigating the rise of THC and CO caused by combustion instability and misfires. A PCC is a small chamber, typically 1–2% of the clearance volume. A separate fuel line supplies gaseous fuel to the PCC and a standard spark plug ignites the slightly rich mixture (equivalence ratio 1.1–1.2) in the PCC. The ignited PCC mixture enters the main combustion chamber as a high energy flame jet, igniting the lean mixture in the main chamber. Typically, natural gas fuels both the main chamber and the PCC. In the current research, a mixture of reformed natural gas (syngas) and natural gas fuels the PCC. Syngas is a broad term that refers to a synthetic gaseous fuel. In this case, syngas specifically denotes a mixture of hydrogen, carbon monoxide, nitrogen, and methane generated in a natural gas reformer. Syngas has a faster flame speed and a wider equivalence ratio range of operation than methane. Fueling the PCC with Syngas reduces combustion instabilities and misfires. This extends the overall engine lean limit, enabling further NOx reductions.Research results presented are aimed at quantifying the benefits of syngas PCC fueling. A model is developed to calculate the equivalence ratio in the PCC for different mixtures and flowrates of fuel. An electronic injection valve is used to supply the PCC with syngas. The delivery pressure, injection timing, and flow rate are varied to optimize PCC equivalence ratio. The experimental results show that supplying the PCC with 100% syngas improves combustion stability by 21% compared to natural gas PCC fueling. A comparison at equivalent combustion stability operating points between 100% syngas and natural gas shows an 87% reduction in NOx emissions for 100% syngas PCC fueling compared to natural gas PCC fueling.  相似文献   

2.
引 言 液体燃料通过喷射进入内燃机的汽缸或喷气发动机的透平中燃烧产生热能.近年来能源危机加剧及减排CO2以保护环境意识提高,促使研究者们采用新的技术提高化石燃料的燃烧效率,其中对单个液滴燃烧物理过程的深刻了解是改进喷射燃烧为特征的内燃机械能量利用效率的基本.对液滴燃烧过程的数值及实验研究已经有几十年.最早的研究者有Godsave[1]、Spalding[2]等,他们基于常物性、球对称及类稳态假设,对液滴在静止空气中的燃烧过程建立了基本数学描述,并得到了著名的"d2定律",即液滴直径平方随时间线性减小,用公式表示为dd2/dt=k,k为燃烧速率常数.  相似文献   

3.
In this paper, combustion characteristics of a direct-injection spark-ignited engine fueled with natural gas-hydrogen blends under various ignition timings and lean mixture condition were investigated. The results show that the ignition timing has significant influence on engine performance, combustion and emissions. The time intervals between the end of fuel injection and ignition timing are very sensitive to direct-injection gas engine combustion. The turbulence in combustion chamber generated by the fuel jet maintains high and relatively strong mixture stratification is presented when decreasing the time intervals between the end of injection and the ignition timing, giving fast burning rate, high brake mean effective pressure, high thermal efficiency and short combustion durations. For specific ignition timing, the brake mean effective pressure and the effective thermal efficiency increase and combustion durations decrease with the increase of hydrogen fraction in natural gas. Exhaust HC concentration decreases and exhaust NOx concentration increase with advancing the ignition timing while the exhaust CO gives little variation under various ignition timings.  相似文献   

4.
《Fuel》2006,85(12-13):1831-1841
The detailed intake, spray, combustion and pollution formation processes of compression ignition engine with high-octane fuel are studied by coupling multi-dimensional computational fluid dynamic (CFD) code with detailed chemical kinetics. An extended hydrocarbon oxidation reaction mechanism used for high-octane fuel was constructed and a modeling strategy of 3D-CFD/chemistry coupling for engine simulation is introduced to meet the requirements of execution time acceptable to simulate the whole engine physicochemical process including intake, compression, spray and combustion process. The improved 3D CFD/chemistry model was validated using the experimental data from HCCI engine with direct injection. Then, the CFD/chemistry model has been employed to simulate the intake, spray, combustion and pollution formation process of gasoline direct injection HCCI engine with two-stage injection strategy. The models account for intake flow structure, spray atomization, droplet evaporation and gas phase chemistry in complex multi-dimensional geometries. The calculated results show that the periphery of fuel-rich zone formed by the second injection ignited first, then the fuel-rich zone ignited and worked as an initiation to ignite the surrounding lean mixture zone formed by the first injection. The two-zone HCCI leads to sequential combustion, this makes ignition timing and combustion rate controllable. In addition, HCCI load range can be extended. However, the periphery of fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions.  相似文献   

5.
浸没燃烧式汽化器(SCV)是液化天然气(LNG)接收站中一种必不可少的换热设备,主要通过水浴系统作为中间介质实现烟气与LNG之间的热量传递。搭建一套完整的SCV流动换热实验平台,对其内部复杂的传热特性进行研究。可视化实验结果揭示了汽化器内部一些独特的流体动力学现象(局部水浴结冰等),同时通过建立的气液两相混合物与跨临界LNG耦合传热计算模型得到了换热管束内外局部流体温度和局部传热系数分布曲线,并分析了LNG进口压力、LNG入口速度、初始水位高度以及烟气进气量对NG出口温度和水浴温度的影响规律。研究成果能够为SCV国产化设计提供重要参考。  相似文献   

6.
ABSTRACT

Results of investigations of a valved pulse combustor to choose optimal geometry, which covered measurements of the flow rates of air and fuel, pressure oscillations, including pressure amplitude and frequency and flue gas composition are presented in the paper. Experimental studies compsiring the operation of the pulse combustor coupled with a drying chamber and working separately are described. It was found that coupling of the pulse combustor with a drying chamber had no significant effect on the pulse combustion process. Smoother runs of pressure oscillations in the combustion chamber, lower noise level and slightly higher NOx emission were observed. The velocity flow field inside the drying chamber was measured by LDA technique. Results confirmed a complex character of pulsating flow in the chamber. A large experimental data set obtained from measurements enabled developing a neural model of pulse combustion process. Artificial neural networks were trained to predict amplitudes and frequencies of pressure oscillations, temperatures in the combustion chamber and emission of toxic substances. An excellent mapping performance of the developed neural models was obtained. Due to complex character of the pulse combustion process, the application of artificial neural networks seems to be the best way to predict inlet parameters of a drying agent produced by the pulse combustor  相似文献   

7.
Conversion of natural gas to liquid fuels is a challenging issue. In SMDS process natural gas is first partially oxidized with pure oxygen to synthesis gas (a mixture of H2 and CO) which is then converted to high quality liquid transportation fuels by utilizing a modernized version of the Fischer-Tropsch reaction. This paper presents a computer simulation of the first stage of the process, i.e. the synthesis gas production from natural gas. ASPEN PLUS equipped with a combustion databank was used for calculations. Concentrations of over 30 combustion species and radicals expected in the synthesis gas have been calculated at equilibrium and several non-equilibrium conditions. Using a sensitivity analysis tool, the relative feed flow rates and reactor parameters have been varied searching to maximize the CO/O2 yield as well as to minimize the undesired nitrogen compounds in the product stream. The optimum reactor temperature for maximizing the CO mole fraction in the synthesis gas was also calculated.  相似文献   

8.
An important stage of the development of promising engine and propulsion systems is provision of an effective process of hydrocarbon fuel combustion. There are many publications with numerical and experimental data on combustion of various gaseous hydrocarbons under laboratory conditions, but there is a lack of data on effective combustion of hydrocarbons in short combustion chambers with a large number of injectors. Results of systematic experimental studies of natural gas (methane) combustion in a high-velocity subsonic air flow in an air-breathing model combustor with a rectangular cross section are presented in this paper.  相似文献   

9.
10.
Results of investigations of a valved pulse combustor to choose optimal geometry, which covered measurements of the flow rates of air and fuel, pressure oscillations, including pressure amplitude and frequency and flue gas composition are presented in the paper. Experimental studies compsiring the operation of the pulse combustor coupled with a drying chamber and working separately are described. It was found that coupling of the pulse combustor with a drying chamber had no significant effect on the pulse combustion process. Smoother runs of pressure oscillations in the combustion chamber, lower noise level and slightly higher NOx emission were observed. The velocity flow field inside the drying chamber was measured by LDA technique. Results confirmed a complex character of pulsating flow in the chamber. A large experimental data set obtained from measurements enabled developing a neural model of pulse combustion process. Artificial neural networks were trained to predict amplitudes and frequencies of pressure oscillations, temperatures in the combustion chamber and emission of toxic substances. An excellent mapping performance of the developed neural models was obtained. Due to complex character of the pulse combustion process, the application of artificial neural networks seems to be the best way to predict inlet parameters of a drying agent produced by the pulse combustor  相似文献   

11.
计算了传统工艺下套筒窑燃烧高炉煤气时下燃烧室的燃烧温度并分析了其不可行性,并就采用燃气预热技术、高效喷射技术及无焰燃烧技术对下燃烧室燃烧温度的影响进行计算分析,从而得出套筒窑燃烧高炉煤气的可行性,并给出若干措施及建议。  相似文献   

12.
建立了波瓣式燃油多点喷射燃烧室模型,考察了波瓣诱发涡系对燃烧室燃烧特性的影响。采用文献的多点喷射燃烧室实验的空载、30%载荷、巡航与起飞4种工况,对波瓣喷嘴燃烧室内的流场涡系结构、燃烧多物量场及燃烧特性进行了数值模拟。结果表明,不同油气质量比下随空气质量流量增加,每个工况下的流向涡、正交涡等无量纲涡量逐渐增大,出口温场品质逐渐提高,NOx排放逐渐降低,燃烧效率和出口温度场改善。波瓣喷嘴燃烧室实验台的水流模型实验结果验证了模型计算结果的正确性。  相似文献   

13.
王明涛  刘焕卫  张百浩 《化工学报》2015,66(10):3834-3840
燃气机热泵(gas engine-driven heat pump)是一种节能环保的供热系统。为了研究燃气机热泵的能源利用效率,利用构建的燃气机热泵实验台,通过理论分析和实验测试研究了燃气机转速、冷凝器进水流量、冷凝器进水温度对系统性能[供热总量、制热性能系数(COP)以及一次能源利用率(PER)]的影响规律。结果表明:燃气机热泵系统供热量随着冷凝器进水流量、燃气机转速的增加而增加,随着冷凝器进水温度的提高而减少。COP和PER随着燃气机转速和进水温度的升高而减少,进水流量对系统性能系数的影响较小。回收的余热占燃气机热泵系统总供热量的40%左右,在考虑余热回收的情况下,燃气机热泵的一次能源利用率在1.15~1.47之间。  相似文献   

14.
Homogenous Charge Combustion Ignition (HCCI) is a good method for higher efficiency and to reduce NOx and particulate matter simultaneously in comparison to conventional internal combustion engines. In HCCI engines, there is no direct control method for auto ignition time. A common way to indirectly control the ignition timing in HCCI combustion engines is varying engine’s parameters which can affect the combustion. In this work, a parametric study on natural gas HCCI combustion is conducted in order to identify the effect of inlet temperature and pressure, compression ratio, equivalence ratio and engine speed on combustion and engine performance parameters. In this paper, two kinds of parameters will be discussed. First, in-cylinder pressure diagrams and variation of start of combustion which are combustion parameters will be presented and then the second category, indicated mean effective pressure and thermal efficiency which are performance parameters will be studied. A six zone model coupled with detailed chemical kinetics code is used to simulate HCCI combustion. Both heat and mass transfer was considered in the modeling procedure. Results revealed that among the considered parameters, the equivalence ratio and inlet pressure are the most valuable parameters which can improve the combustion and performance characteristics of the HCCI engine.  相似文献   

15.
Exergoeconomic analysis has been used as a powerful tool to study and optimize various types of energy-related systems. In this study, we use the specific exergy cost (SPECO) method to calculate exergy-related parameters and display cost flows for all streams and components in a gas engine–driven heat pump drying system based on the experimental data. We analyze and evaluate the performance of the drying system components and the drying process for three different medicinal and aromatic plants from an exergoeconomic point of view. We also investigate the effect of varying dead (reference) state temperatures on exergoeconomic performance parameters for the drying system components and drying process. Although the condenser and drying chamber of the gas engine–driven heat pump dryer were significantly affected by the ambient temperature, the gas engine was slightly influenced by the ambient temperature. At low ambient temperatures, the exergy rates increased and the most effective performance obtained from this dryer was at 0°C. The performance of the drying process also increased at low ambient temperatures. This study demonstrated that exergoeconomic analysis can provide more information than exergy analysis, and the results obtained from the exergoeconomic analysis provided cost-based information, suggesting potential locations for drying system improvement.  相似文献   

16.
蓄热式钢包烘烤过程中包内高温低氧特性的数值模拟   总被引:3,自引:1,他引:2  
为了分析入炉气体的预热温度对高温空气燃烧过程的影响,综合考虑体系的质量、动量、能量守恒以及燃烧体系的组份平衡,建立了煤气-空气双预热的三维非稳态燃烧数学模型,并以CFX4.3为计算平台,耦合流体流动、燃烧和换热过程,首次对蓄热式燃烧过程中高温低氧特性进行了数值研究,得出了在不同预热温度时,燃烧室内气体温度场和氧气浓度场分布. 结果表明, 提高气体预热温度有利于加快燃烧进程,提高燃烧室内气体的整体温度及温度均匀性,降低局部氧浓度.  相似文献   

17.
The performance of a boron/potassium‐nitrate based pyrotechnic igniter, used as an initiator in airbag gas generators, was investigated at different initial temperatures. Igniter firings were conducted in a small vented combustion chamber in order to measure the instantaneous chamber pressures. A theoretical model, which considers multi‐phase products and lumped chamber parameters, was adopted to determine the discharging gas phase and condensed phase mass flow rates from the igniter. The data reduction model used experimentally obtained pressure‐time traces and the total burned mass as input data. The calculated instantaneous mass flow rates of the igniter at various initial temperatures showed that the initial temperature has a major influence on the igniter's performance. For the temperature range tested (−20 °C to 60 °C), the pressurization rate and the total mass flow rate of the igniter increased with temperature and ranged from 322 GPa/s to 721 GPa/s and 4.3 kg/s to 6.1 kg/s, respectively. It was found that the condensed‐phase products comprised the majority of the igniter discharge products. The mass fraction of the condensed‐phase products indicated a weak dependency on initial igniter temperature. Under similar test conditions, the recorded pressure‐time traces during igniter firings were found to be quite reproducible.  相似文献   

18.
《Fuel》2007,86(10-11):1483-1489
Combustion characteristics of natural gas and dimethyl ether (DME) mixture in a homogeneous charge compression ignition (HCCI) engine were studied numerically. Detailed chemical kinetics with 83 species and 360 reactions was used with an engine CFD code to simulate the combustion process. Operating conditions with different fuel compositions were simulated. Combustion, nitrogen oxides emissions and effects of fuel compositions on engine operating limits were well predicted by the present model. Chemical kinetics analysis indicated that ignition was achieved by DME oxidation which, in turn, induced combustion of natural gas. Low-temperature heat release is more pronounced as the amount of DME increases. Engine operations become unstable as the excess air ratio of natural gas is reduced near 2. The model also captures the HCCI features of low-combustion temperature and low-nitrogen oxides emissions for the alternative fuels used in this study.  相似文献   

19.
Some methods for calculating the wet-bulb temperature are compared. These methods are based on different forms of equations relating the heat and mass transfer in evaporation of a liquid into a gas flow. It is hypothesized that the deviation from the similarity between heat and mass transfer is described by the first power of the Lewis number, for which the parameters of the gas mixture are calculated on the phase-transition surface. In this case, the heat-transfer coefficients calculated from the enthalpy and temperature gradients of the gas–vapor mixture are equal to each other. The wet-bulb temperature calculated using this approach is in satisfactory agreement with experimental data.  相似文献   

20.
Unsteady filtration gas combustion with various gas flow parameters is studied by mathematical modeling. Transition processes due to a sudden change in the calorific value of the gas mixture, gas flow velocity, and flow direction are considered. Trends and mechanisms of change in the structure of the filtration gas combustion wave and its propagation velocity are analyzed for various types of transition processes. It is found that with a sudden change in gas flow parameters, the flame can abruptly move large distances in the porous medium. Subsequently, at the new flame localization, a wave of filtration gas combustion forms which corresponds to the changed parameters of the gas flow. If in the porous medium, the amount of heat is insufficient, the transition process ends with quenching. As the gas flow direction changes, the combustion wave continues to propagate in the former direction for some time, which can lead to the spread of the high-temperature zone in devices based on the reverse process with a homogeneous gas-phase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号