首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Development of low cost and efficient non-noble-metal cocatalyst is still a hot topic to improve the activity of g-C3N4 in photocatalytic water splitting to produce H2. As a potential cocatalyst in photocatalytic application, transition metal phosphides (TMPs) have been proved to greatly enhance the photocatalytic H2 evolution performance comparable to noble metal Pt. Modifying TMPs by incorporation of hetero-metal has also been reported as an effective strategy for their electronic structure regulation and optimizing the intermediates absorption energy, however, which is rarely reported in the field of photocatalysis. Herein, the 0D/2D heterojunction is constructed by high-dispersity Mo-doped Ni2P nanodots supported on g-C3N4 nanosheets, which exhibits the significantly improved photocatalytic H2 evolution performance compared with that of Ni2P/g-C3N4 and Pt/g-C3N4. Specifically, the optimal H2 evolution rate reaches 67.6 μmol h−1 over Mo–Ni2P/g-C3N4 sample, which is 6.0 and 2.4 times higher than those of Pt/g-C3N4 and Ni2P/g-C3N4, respectively. The fascinating result mainly stems from the improved separation efficiency of charge carriers and more effective electron donating reaction sites resulted from the electronic structure adjustment through doping Mo element into Ni2P as cocatalyst. This work provides a valid evidence for the modification of cocatalyst to realize high H2 evolution performance, opening up new opportunities and possibilities for the application of TMPs in the photocatalytic field.  相似文献   

2.
In an attempt to construct efficient and robust photocatalysts/systems for solar H2 evolution from water splitting, the development of highly active and stable H2 evolution cocatalysts is crucial yet remains a great challenge. Herein, we present that vanadium carbide (VC) can serve as an efficient cocatalyst when integrated with TiO2 for photocatalytic H2 evolution. With 15 wt% VC, the obtained TiO2/VC (15 wt%) composite photocatalyst (denoted as TV15) shows the highest photocatalytic H2 evolution rate of 521.4 μmol h−1 g−1, while the pristine TiO2 hardly shows H2 evolution activity. The apparent quantum efficiency (AQE) of H2 evolution reaches up to 2.3% under light irradiation of 365 nm. Notably, the TV15 exhibits excellent photocatalytic stability for H2 evolution over four cycles of continuous light irradiation of 20 h. The enhanced activity of TV15 can be attributed to the cocatalyst effects of VC, which can not only effectively capture the photogenerated electrons of TiO2 to greatly enhance the charge separation efficiency but also significantly reduce the overpotential of H2 evolution reaction, thus enhancing the photocatalytic activity of TiO2/VC towards H2 evolution. This work provides a new insight to rationally design and develop efficient photocatalysts using active and stable transition metal carbides as cocatalysts.  相似文献   

3.
In this paper, a novel 2D bubble-like g-C3N4 (B–CN) with a highly porous and crosslinked structure is successfully synthesized via a cost-effective bottom-up process. The as-prepared B–CN photocatalyst delivers a considerably expanded specific surface area and increased active sites. Moreover, the 2D bubble-like structure can afford shortened diffusion paths for both photogenerated charge carriers and reactants. As a result, the photocatalytic H2 evolution rate of B–CN reached 268.9 μmol g?1 h?1, over 5 times more than that of bulk C3N4. The Ni ions were further deposited on B–CN as a cocatalyst to enhance the photocatalytic activity. Benefit from the synergy of 2D bubble-like structure and Ni species cocatalyst, recombination of photoinduced charges was greatly inhibited and the hydrogen evolution reaction (HER) was significantly accelerated. The resulted catalyst achieved a dramatically high H2 evolution rate of 1291 μmol g?1 h?1. This work provides an alternative way to synthesize novel porous carbon nitride together with non-noble metal cocatalysts toward enhanced photocatalytic activity for H2 production.  相似文献   

4.
Molybdenum disulfide (MoS2) as a representative transition-metal dichalcogenide (TMD) has been extensively used as a noble-metal-free cocatalyst for photocatalytic hydrogen (H2) production, but suffers from poor photocatalytic activity due to the catalytic inactivity of its basal plane. Herein, by bounding another metal-free cocatalyst, C60, with MoS2, we report the first MoS2-C60 hybrid featuring a van der Waals heterostructure prepared via a facile and eco-friendly solid-state mechanochemical route. C60 bounding onto the edge of MoS2 nanosheets leads to the decreases of both the number of layers and the size of MoS2 nanosheets, as well as a negative shift of the conduction band minimum along with a positive shift of valance band maximum relative to the bulk MoS2 and MoS2 ball-milled without C60 (MoS2-BM). Under the optimized weight ratio of MoS2:C60 (1:1) in the raw mixture subject to ball-milling, MoS2-C60 hybrid containing 2.8 wt% C60 shows an exceptional visible light photocatalytic H2 production rate of 6.89 mmol h?1 g?1 in the presence of a photosensitizer Eosin Y (EY), which is significantly enhanced relative to the bulk MoS2 and pristine C60, both of which show almost no photocatalytic H2 activity. Thus, the synergistic enhancement of photocatalytic activities of both MoS2 and C60 is revealed.  相似文献   

5.
An efficient ternary Mn0.2Cd0.8S/MoS2/Co3O4 heterojunction was prepared and displayed excellent photocatalytic performance. The ternary Mn0.2Cd0.8S/MoS2/Co3O4 heterojunction with 0.62 wt% of MoS2 and 1.51 wt% of Co3O4 achieved the highest H2 evolution activity (16.45 mmol g−1 h−1), which was well above Mn0.2Cd0.8S (2.72 mmol g−1 h−1). The improved H2 evolution activity was ascribed to the synergistic effect of the Mn0.2Cd0.8S/Co3O4 p–n heterojunction and the modification of MoS2 as a co-catalyst. This work can offer a new perspective for the application of MnxCd1−xS-based ternary heterojunction towards solar energy conversion.  相似文献   

6.
Ceria dioxide supported on graphitic carbon nitride (CeO2/g-C3N4) composites were facilely synthesized to be application for photocatalytic hydrogen (H2) generation in this present work. The physical and chemical properties of CeO2/g-C3N4 nanocomposites were determined via a series of characterizations. The CeO2/g-C3N4 composites prepared by facile thermal annealing and rotation-evaporation method exhibit excellent photocatalytic H2 evolution with visible-light illumination. The best hydrogen generation rate of CeO2/g-C3N4 composite with 1.5 wt% Pt is 0.83 mmol h−1 g−1, which is almost same as that of composite with 3 wt% Pt prepared by simple physical mixing method. The significantly developed photocatalytic activity of CeO2/g-C3N4 composite is majorly ascribed to the stronger interfacial effects with the more visible-light absorbance and faster electron transfer. This work reveals that construction of the CeO2/g-C3N4 composite with high disperse and close knit by the facile thermal annealing and rotation-evaporation method could be an effective method to achieve excellent photocatalytic hydrogen evolution performance.  相似文献   

7.
In this work, the porous carbon polyhedra were firstly obtained by carbonizing the zeolite imidazole framework (ZIF-8). Then the carbon polyhedra and precursors of MoS2 were successfully combined by a hydrothermal reaction, forming the C-MoS2 composites with different carbon contents. The well-tuned C-MoS2 sample possesses a core-shell morphology, in which the carbon substrate is well decorated by vertically aligned MoS2 ultrathin nanosheets. The resulting composites can be used as electrocatalysts of hydrogen evolution reaction (HER), displaying significantly superior activities to pure MoS2 and carbon. It's found that the carbon content largely affects the architectures and HER behaviors of catalysts. In particular, the optimized catalyst yields the best catalytic activity with the lowest onset potential (35 mV), smallest Tafel slope (53 mv dec?1), lowest overpotential (200 mV at 10 mA cm?2), as well as extraordinary long-term stability in H2SO4. The enhanced HER activity can be attributed to the unique core-shell structure, where abundant active edge sites of MoS2 are exposed and the underlying carbon substrate effectively improves the conductivity of the electrode.  相似文献   

8.
Molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) composite photocatalysts were prepared via a facile impregnation method. The physical and photophysical properties of the MoS2–g-C3N4 composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microcopy (HRTEM), ultraviolet–visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The photoelectrochemical (PEC) measurements were tested via several on–off cycles under visible light irradiation. The photocatalytic hydrogen evolution experiments indicate that the MoS2 co-catalysts can efficiently promote the separation of photogenerated charge carriers in g-C3N4, and consequently enhance the H2 evolution activity. The 0.5wt% MoS2–g-C3N4 sample shows the highest catalytic activity, and the corresponding H2 evolution rate is 23.10 μmol h−1, which is enhanced by 11.3 times compared to the unmodified g-C3N4. A possible photocatalytic mechanism of MoS2 co-catalysts on the improvement of visible light photocatalytic performance of g-C3N4 is proposed and supported by PL and PEC results.  相似文献   

9.
Herein we report a heterostructure with ultrathin nanosheets of Co-doped molybdenum sulfide on CdS nanorod array (donated as CdS@CoMo2S4/MoS2) by hydrothermal synthesis. Firstly, elemental Co doping MoS2 (CoMo2S4) delivers the double benefits of increased active sites and enhanced conductivity. Secondly, the structural characteristics maximally exposes the MoS2 edges and enlarges interfacial contact area between the composite catalyst and electrolyte, as well as the efficient interfacial charge transfer. The ratio of CoMo2S4/MoS2 in CdS@CoMo2S4/MoS2 plays a crucial role for the enhanced photo-assistant electrocatalytic hydrogen evolution reaction (HER). We can tune the ratio of CoMo2S4/MoS2 by controlling the preparation time or the ratio of precursor of Co/Mo. The catalyst with predominant MoS2 phase shows superior photocatalytic HER performance with a high H2 production rate of 46.60 μmol mg−1 h−1. Meanwhile, the catalyst with predominant CoMo2S4 phase exhibits not only relatively low overpotential of 172 mV at 10 mA cm−2, which outperforms most values that have been reported on catalyst supported on ITO substrate, but also possesses H2 production rate of 23.47 μmol mg−1 h−1. The superior photo-assistant electrocatalytic HER activity results from the synergistically structural and electronic modulations, as well as the proper energy band alignment between MoS2 and CdS. This investigation could provide an approach to integrate the electro- and photocatalytic activities for HER, especially the photo responding behaviour at a bias potential which is meaningful to produce H2 for actual application.  相似文献   

10.
Amorphous molybdenum sulfide (a-MoSx) prepared by in situ photoreduction method with an abundance of exposed active sites has been identified as an efficient cocatalyst for catalyzing photocatalytic H2 evolution reaction (HER). However, the intrinsic activity of the a-MoSx cocatalyst toward HER is low due to the unfavorable electronic structures of the active sites. Herein, we report a facile light-induced method for the confined growth of transition metal (TM) doped MoSx (a-TM-MoSx) cocatalysts on TiO2 nanoparticles and their catalytic activity for in situ photocatalytic HER. It is found that doping Co into a-MoSx can greatly enhance the activity of resulted a-Co-MoSx cocatalyst for photocatalytic H2 evolution over TiO2 among the transition metal dopants (Co, Ni, Fe, Cu, Zn) tested. The most efficient a-Co-MoSx cocatalyst (Co/Mo = 1/4 and 4 mol% loading) loaded TiO2 (TiO2/a-Co-MoSx) shows a H2 evolution rate of 133.8 μmol h−1, which is 3.3 times higher than that of a-MoSx loaded TiO2 (TiO2/a-MoSx). Moreover, the TiO2/a-Co-MoSx photocatalyst shows excellent recycling H2 evolution stability. The characterization results reveal that a-Co-MoSx cocatalyst can not only effectively capture the photogenerated electrons of TiO2 to greatly enhance the separation efficiency of photogenerated charges but also significantly reduce the overpotential of HER due to the formation of highly active “CoMoS” sites, thus synergistically enhancing the catalytic activity of TiO2/a-Co-MoSx. Moreover, the light-induced growth of a-Co-MoSx on TiO2 is found to readily couple with the in situ photocatalytic HER. Therefore, this work provides a simple and efficient strategy for designing high-performance a-MoSx-based cocatalysts for stable in situ photocatalytic H2 evolution.  相似文献   

11.
Few-layer molybdenum disulfide (MoS2) nanosheets are well applied in many field, but the lack of simple methods for the preparation of solid few-layer MoS2 nanosheets with high yield and quality has greatly restricted their development. In this work, a facile solvothermal treatment coupled with the liquid exfoliation strategy was conducted to produce solid monodispersed few-layer MoS2 nanosheets from the MoS2 stack, and the output can reach as high as approximately 0.3 g/g. The few-layer features were confirmed by characterizations of SEM, TEM, Raman spectra, UV–vis absorption spectrum and PL spectrum. The obtained MoS2 nanosheets exhibit fantastic dispersity and stability in an NMP solution, which can remain uniform even after one year. In general, pure MoS2 catalysts show no or poor activity for photocatalytic hydrogen evolution as reported in the literature, however, the prepared MoS2 nanosheets in this work display excellent photocatalytic H2 evolution performance of 1241.3 μmol g−1 h−1 due to the synergistic structural and electronic modifications, including a bigger specific surface area, additional exposed active edge sites, superior charge separation and transfer efficiency, and higher reduction potential.  相似文献   

12.
A photocatalytic integrated system containing Pt nanoclusters, CoWO4 nanoclusters and C3N4 nanosheets was achieved through a hydrothermal process followed by photodeposition. Meanwhile, the photocatalytic activity of the as-prepared system was explored for light driven H2 evolution. Finally, the photocatalytic mechanism was explored roughly. The results show that there exists strong synergistic effect between Pt and CoWO4. The photocatalytic activity of C3N4 can be significantly enhanced utilizing the aforementioned synergistic effect. When the as-prepared photocatalytic system is used, the fastest evolution rate of H2 can be up to 14.2 μmol h−1, which is 2.1 times as high as that over the Pt modified C3N4 nanosheets (6.7 μmol h−1). And the quantum yield of the as-prepared photocatalytic system at 400 nm (0.018%) is also much higher than that of the Pt modified C3N4 nanosheets (0.004%). Here, this remarkable photocatalytic activity ought to be attributed to superior separation of the electro-hole pair caused by efficient charge transfer in the photocatalytic system which follows a Z-scheme-like mechanism. Therein, Pt nanoclusters may serve as an electron transfer pathway between CoWO4 and C3N4 as well as active sites while CoWO4 nanoclusters may play a water oxidation cocatalyst.  相似文献   

13.
Designing efficient photocatalytic systems for hydrogen evolution is extremely important from the viewpoint of the energy crisis. Highly crystalline heterostructure catalysts have been established, considering their interface electric field effect and structural features, which can help improve their photocatalytic hydrogen-production activity. In this study, we fabricated a highly crystalline heterojunction consisting of ZnFe2O4 nanobricks anchored onto 2D molybdenum disulfide (MoS2) nanosheets (i.e., ZnFe2O4/MoS2) via a hydrothermal approach. The optimized ZnFe2O4/MoS2 photocatalyst, with a ZnFe2O4 content of 7.5 wt%, exhibited a high hydrogen-production rate of 142.1 μmol h−1 g−1, which was 10.3 times greater than that for the pristine ZnFe2O4 under identical conditions. The photoelectrochemical results revealed that the ZnFe2O4/MoS2 heterojunction considerably diminished the recombination of electrons and holes and promoted efficient charge transfer. Subsequently, the plausible Z-scheme mechanism for photocatalytic hydrogen production under white-LED light irradiation was discussed. Additionally, the influence of cocatalysts on the photocatalytic hydrogen evolution for the ZnFe2O4/MoS2 heterostructure was investigated. This work has demonstrated a simplified coupling of one-dimensional or zero-dimensional structures with 2D nanosheets for improving the photocatalytic hydrogen production activity as well as confirmed that MoS2 is a viable substitute for precious metal-free photocatalysis.  相似文献   

14.
Exploiting active, stable, and cost-efficient cocatalysts is crucial to enhance the photocatalytic performance of semiconductor-based photocatalysts for H2 evolution from water splitting. Herein, we report on using vanadium diboride (VB2) as an efficient cocatalyst to enhance the photocatalytic H2 evolution performance of CdS nanoparticles under visible light irradiation (λ ≥ 420 nm). The CdS/VB2 composites prepared by a facile solution-mixing method exhibit much improved H2 evolution activities in 10 vol% lactic acid (LA) solution relative to pristine CdS. The most efficient CdS/VB2 composite with 20 wt% VB2 (CB20) exhibits a H2 evolution rate as high as 12.1 mmol h−1 g−1, which is about 11 times higher than that of CdS alone (1.1 mmol h−1 g−1). Moreover, the highest apparent quantum efficiency (AQE) of 4.4% is recorded on CB20 at 420 nm. The improved photocatalytic activity of CdS/VB2 composite can be attributed to the excellent cocatalytic effect of VB2, which can not only enhance the charge separation on CdS but also accelerate the H2 evolution kinetics. This work demonstrates the great potential of using transition metal brodies (TMBs) as efficient cocatalysts for developing noble-metal-free and stable photocatalysts for solar photocatalytic H2 evolution.  相似文献   

15.
Platinum-based alloy materials as effective cocatalysts in improving the performance of photocatalytic H2 production have raised great interest. Herein, a facile strategy of chemical reduction is established to synthesize bimetallic PtNi nanoparticles on 2D g-C3N4 nanosheets with excellent photocatalytic activity. The addition of PtNi nanoparticles can provide new H+ reduction sites and increase more active sites of the material. The synergistic effect between PtNi alloy nanoparticles and 2D g-C3N4 nanosheets can regulate electronic structure, narrow the band, accelerate charge transfer efficiency and inhabit the recombination of photo-induced electron (e) and hole pairs (h+), contributing to the improvement of hydrogen evolution activity. The optimal hydrogen evolution rate of Pt0.6Ni0.4/CN shows higher hydrogen evolution rate (9528 μmol·g−1·h−1), which is 13.1 times than that of pure g-C3N4 nanosheets. Besides, a possible mechanism of photocatalytic hydrogen generation has been brought up according to a series of physical and chemical characterization. This work also provides a potential idea of developing cocatalysts integrating metal alloys with 2D g-C3N4 nanosheets for promoting photocatalytic hydrogen evolution.  相似文献   

16.
The MoS2/ZnIn2S4 composites with MoS2 anchored on the surface of ZnIn2S4 microspheres were fabricated by a facile solvothermal method. To clarify the crystal phases, morphologies, chemical compositions, optical properties, and special surface areas of the obtained photocatalysts, the corresponding characterization measurements were performed. The photocatalytic H2 evolution activities of MoS2/ZnIn2S4 composites were evaluated and compared with using lactic acid as sacrificial reagents. The results showed that integrating MoS2 with ZnIn2S4 could remarkably boost the photocatalytic H2 evolution performance and the maximum H2 evolution rate of 201 μmol h?1 was achieved over 1 wt% MoS2 loading on the ZnIn2S4, corresponding to the apparent quantum efficiency (AQE) about 3.08% at 420 nm monochromatic light. The photoelectrochemical tests and photoluminescence spectra (PL) versified that the efficient charge transfer and separation were achieved over MoS2/ZnIn2S4 composite in contrast with single ZnIn2S4, which would significantly benefit the enhancement of photocatalytic H2 activity. This work provides a desired strategy to design and synthesize the visible-light-response photocatalysts with MoS2 as cocatalysts to enhance the photocatalytic activity.  相似文献   

17.
To create hybrid composites for highly effective photocatalytic hydrogen evolution reactions, the photogenerated charge separation efficiency at the hybrid interface and the surface reaction kinetics at the reactive sites are key factors. In this work, CoFe hydroxide nanosheets prepared by dealloying were first mixed with graphitic carbon nitride (g-C3N4) to synthesize a CoFe2O4/g-C3N4 composite with strong Co-N bonds at the interface by a simple hydrothermal method. It was found that the presence of Co-N bonds between the components in the composites enhances the separation and transfer by photogenerated carriers at the composite interface. Furthermore, the presence of Co-N bonds enhanced the synergistic effect of the hybrid, which significantly boosts their photocatalytic performance in comparison to their counterparts. Under full-spectrum light, the composite photocatalyst has a greater efficiency of photocatalytic water H2 evolution (6.793 mmol/g−1·h−1) and exceptional stability when compared to pure g-C3N4 (0.236 mmol/g−1·h−1) and CoFe2O4 (0.088 mmol/g−1·h−1). Under visible irradiation, the photocatalytic activity of the composite (0.556 mmol/g−1·h−1) for H2 evolution increased by factors of 28.37 and 75.8 when compared to pure g-C3N4 and CoFe2O4, respectively.  相似文献   

18.
Appropriate dispersion of cocatalyst on semiconductor for improving photocatalytic H2 production efficiency is a challenging work in semiconductor photocatalysis. Herein, we constructed the noble-metal-free CoSx modified tubular sulfur doped carbon nitride (SCN) photocatalysts by chemical precipitation process. The amorphous CoSx well dispersed on SCN served as H2 production sites, which reduced the overpotential and inhibited the recombination of photogenerated carriers by interfacial charge transfer. Maximized H2 production rate of 573.06 μmol g−1 h−1 under visible light irradiation was obtained by optimizing the CoSx loading proportion to 2.4%, which was higher than that of 0.75 wt% Pt/SCN. In addition, a possible mechanism for improved H2 production activity was proposed based on the experiments and discussion. This work provides a new strategy to design rational structure of non-noble metal cocatalyst modified photocatalyst to further improve H2 production performance.  相似文献   

19.
Photocatalytic water splitting is considered to be a green H2 generation approach and has potential to be applied in the future. As a photocatalytic active material for H2 evolution, CdS is a good candidate. However, the pristine CdS still suffers from low efficiency and poor stability. To address those issues, we developed noble-metal-free CdS@MoS2 core-shell nanoheterostructures which exhibit outstanding photocatalytic H2 evolution performance thus far with rate of 62.55 mmol g−1 h−1, which exceeds that of pristine CdS by a factor of 148. Meanwhile, the photocatalytic stability can be well retained with no deterioration of activity in 24 h reaction. The excellent performance can be reasonably attributed to the low crystallinity of MoS2 with numerous active sites provided, and the band alignment of CdS and MoS2 as determined by valence band-XPS and Mott-Schottky plots analysis, which significantly promotes charge transportation and separation. The enhanced photocatalytic stability here should be ascribed to the intimate growth of MoS2 shells which significantly passivate the surface trap states of CdS cores and thus the photocorrosion is remarkably retarded. This novel strategy will inspire the fabrication of other photocatalytic systems, and may high-efficient photocatalysts be obtained.  相似文献   

20.
Two‐dimensional MoS2 has been widely used as hydrogen evolution reaction (HER) cocatalyst to load onto nanostructured semiconductors for visible light‐response photocatalytic hydrogen production. However, its another important role as light harvester because of the band‐gap tunable property and beneficial band position has been rarely exploited. Herein, few layer‐thick MoS2 nanoflakes with extended light absorption over the range of 400 to 680 nm and a photocatalytic HER rate of 0.98 mmol/h/g have been obtained. Then 7‐nm‐sized Cd0.5Zn0.5S quantum dots (QDs) are selectively grown upon ultrathin MoS2 nanoflakes for enhanced photocatalytic H2 generation. Upon the photocatalytic, light absorption, and charge transfer properties of the MoS2‐Cd0.5Zn0.5S composites evolved with the amount of MoS2 from 0 to 3 wt%, the multiple roles of MoS2 as long‐wavelength light absorber, in‐plane carrier mediator, and edge site‐active HER catalyst have been revealed. An optimum H2 generation rate of 8863 μmol/h/g and a solar to hydrogen (STH) efficiency of 2.15% have been achieved for 2 wt% MoS2‐Cd0.5Zn0.5S flakes. Such a strategy can be applied to other cocatalysts with both the light response and HER activity for efficient photocatalytic property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号