首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combustion characteristics of liquefied petroleum gas inside porous heating burners have been investigated experimentally under steady-state and transient conditions. Cooling tubes were embedded in the postflame region of the packed bed of a porous heating burner. The flame speed, temperature profile, and [NOx] and [CO] in the product gases were monitored during an experiment. Due to the heat removal by the cooling tubes, a phenomenon termed metastable combustion was observed; this is that only one flame speed exists at a particular equivalence ratio for maintaining stable combustion within the porous bed of the porous heating burner. This behavior is quite different from that of porous burners without cooling tubes, in which an extended range of flame speeds usually is found for maintaining stable combustion. After metastable combustion has been established in a porous heating burner, a change in the equivalence ratio will stop the metastable combustion and drive the flame out of the packed bed. From the steady-state results, the porous heating burner was shown to maintain stable combustion under fuel-lean conditions with an equivalence ratio lower than the flammability limit of a normal free-burning system. The flame speed in a porous heating burner was found to decrease with an increase in the length of the porous bed. Combustion within a porous heating burner has the features of low flame temperature, extended reaction zone, high preheating temperature and low emissions of NOx and CO. The flame temperature ranged from 1050 to 1250 °C, which is ∼200 °C lower than the adiabatic flame temperature at the corresponding equivalence ratio. The length of the reaction zone could be more than 70 mm and the preheating temperature ranged from 950 to 1000 °C. Both [NOx] and [CO] were low, typically below 10 ppm.  相似文献   

2.
Hydrogen energy is an ideal clean energy to solve the expanding energy demand and environmental problems caused by fossil fuels. In order to produce hydrogen, a double-layer porous media burner with shrunk structure was designed to explore the partial oxidation (POX) of methane. And the combustion temperature, species concentration and reforming efficiency were studied under different shrunk parameters and operating conditions. The results indicated that the shrunk structure greatly influenced the flame position and temperature distribution. The flame moved to the downstream section with the decreasing of the inner shrunk diameter and the increasing of the shrunk height. When the diameter of the filled Al2O3 pellets was 8 mm, the hydrogen yield reached the highest value of 43.8%. With the increasing of equivalence ratio, the reforming efficiency increased first and then decreased, and the maximum value of 53.0% was reached at φ = 1.5. However, the reforming efficiency and axial temperature kept increasing when the inlet velocity increased from 10 to 18 cm/s. The corresponding results provided theoretical reference for the control of flame position and species production by the design of shrunk structure in porous media burner.  相似文献   

3.
This paper presents the results of an experimental study on the heat transfer characteristics of an inverse diffusion flame (IDF) impinging vertically upwards on a horizontal copper plate. The IDF burner used in the experiment has a central air jet surrounded circumferentially by 12 outer fuel jets. The heat flux at the stagnation point and the radial distribution of heat flux were measured with a heat flux sensor. The effects of Reynolds number, overall equivalence ratio, and nozzle-to-plate distance on the heat flux were investigated. The area-averaged heat flux and the heat transfer efficiency were calculated from the radial heat flux within a radial distance of 50 mm from the stagnation point of the flame, for air jet Reynolds number (Reair) of 2000, 2500 and 3000, for overall equivalence ratios (Φ) of 0.8–1.8, at normalized nozzle-to-plate distances (H/dIDF) between 4 and 10. Similar experiments were carried out on a circular premixed impinging flame for comparison.It was found that, for the impinging IDF, for Φ of 1.2 or higher, the area-averaged heat flux increased as the Reair or Φ was increased while the heat transfer efficiency decreased when these two parameters increased. Thus for the IDF, the maximum heat transfer efficiency occurred at Reair = 2000 and Φ = 1.2. At lower Φ, the heat transfer efficiency could increase when Φ was decreased. For the range of H/dIDF investigated, there was certain variation in the heat transfer efficiency with H/dIDF. The heat transfer efficiency of the premixed flame has a peak value at Φ = 1.0 at H/dP = 2 and decreases at higher Φ and higher H/dP. The IDF could have comparable or even higher heat transfer efficiency than a premixed flame.  相似文献   

4.
Under the condition that the gas composition constant equivalence ratio is Φ = 1, and the initial temperature and initial pressure are T0 and P0, respectively, the experimental study of the premixed gas flames with different hydrogen doping ratios (φ = 10%–40%) is different. The behavior and shape change of propagation in the flaring rate pipe (? = 1.0–0.25). The study found that the pre-mixed gas flame in the flared pipe has undergone more complicated shape changes than other studies. One of the outstanding findings is that the tulip flame appeared twice in this open pipe experiment. And through the high-speed camera and high-frequency pressure sensor to obtain the tulip flame picture and the pressure change in the combustion chamber, comprehensive analysis of the experimental results, and the results show that every appearance of the tulip flame is accompanied by the deceleration of the flame front and the increase of overpressure in the combustion chamber.  相似文献   

5.
In the present study, numerical investigation of jet impingement cooling of a constant heat flux horizontal surface immersed in a confined porous channel is performed under mixed convection conditions, and the Darcian and non-Darcian effects are evaluated. The unsteady stream function-vorticity formulation is used to solve the governing equations. The results are presented in the mixed convection regime with wide ranges of the governing parameters: Reynolds number (1 ≤ Re ≤ 1000), modified Grashof number (10 ≤ Gr1 ≤ 100), half jet width (0.1 ≤ D ≤ 1.0), Darcy number (1 × 10?6 ≤ Da ≤ 1 × 10?2), and the distance between the jet and the heated portion (0.1 ≤ H ≤ 1.0). It is found that the average Nusselt number (Nuavg) increases with increase in either modified Grashof number or jet width for high values of Reynolds number. The average Nusselt number also increases with decrease in the distance between the jet and the heated portion. The average Nusselt number decreases with the increase in Da for the non-Darcy regime when Re is low whereas Nuavg increases when Re is high. It is shown that mixed convection mode can cause minimum heat transfer unfavorably due to counteraction of jet flow against buoyancy driven flow. Minimum Nuavg occurs more obviously at higher values of H. Hence the design of jet impingement cooling through porous medium should be carefully considered in the mixed convection regimes.  相似文献   

6.
The conversion of nitric oxide (using CNG/air as fuel/oxidizer) inside a porous medium is investigated in this study. Unlike freely propagating flames, porous burners provide a solid medium that facilitates heat exchange with the gaseous phase. The heat exchange allows the stabilization of a variety of fuel mixtures from lean to rich and with a variety of calorific values. In addition, it allows the control of the reaction zone temperature and thus the control of pollutant formation while maintaining flame stability. An experimental porous burner was designed and manufactured for this purpose. The effects of equivalence ratio and flow velocity on the flame stabilization, NOx and TFN (total fixed nitrogen) conversion ratios, and temperature profiles along the burner are investigated. In addition, numerical calculations using the PLUG flow simulator model and the GRI 3.0 kinetic mechanism reveals the key reactions which control the conversion efficiency. It was found that under slightly fuel-rich conditions (φ?1.3) NOx mostly converts to N2 with a maximum conversion ratio of 65%, while for higher equivalence ratios (φ>1.3) a large proportion of NOx converts to NH3. Results from experiments and numerical modeling showed that the temperature profile along the burner has significant effects on the NOx and TFN conversion ratios. It was also found that temperatures between 1000 and 1500 K are most desirable for NOx and TFN conversion in the porous burner. Analysis of the chemical paths for the low- and high-equivalence-ratio cases showed that the formation of nitrogen-containing species under very rich conditions (φ>1.3) is due to the increased importance of the HCNO path as compared to the HNO path. The latter is the dominant path at low equivalence ratios (φ?1.3) and leads to the formation of N2. The NO concentration in the initial mixture was found to improve the conversion by up to 20% at low equivalence ratios (φ?1.3) and to have negligible effect at higher equivalence ratios.  相似文献   

7.
This paper investigates the local heat transfer of a co-axial rotating cylinder. In the inner flow field of the rotating cylinder, the dimensionless parameters include the rotational Reynolds number (ReΩ) and buoyancy parameter (Gr). The test rig is designed to make the rotating in the inner cylinder and stationary in the outer cylinder. The local temperature distributions of the inner and outer cylinder on axial direction were measured. Under the experimental condition, whereas the ranges of the rotational Reynolds number are 2400  ReΩ  45,000. Experimental results reveal that the rotational Reynolds number's increase is with the heat transfer coefficient distributions increase types. Finally, the local heat transfer rate on the wall are correlated and compared with that in the existing literature.  相似文献   

8.
Ammonia (NH3) is a carbon-free fuel that shows great research prospects due to its ideal production and storage systems. The experimental data of the laminar burning velocity of NH3/H2/air flame at different hydrogen ratios (XH2 = 0.1–0.5), equivalent ratios (φ = 0.8–1.3), initial pressures (P = 0.1–0.7 MPa), and initial temperatures (T = 298–493 K) were measured. The laminar burning velocity of the NH3/H2/air flame increased upon increasing the hydrogen ratios and temperature, but it decreased upon increasing the pressure. The equivalent ratio of the maximum laminar burning velocity was only affected by the proportion of reactants. The equivalence ratio value of the maximum laminar burning velocity was between 1.1 and 1.2 when XH2 = 0.3. The chemical reaction kinetics of NH3/H2/air flame under four different initial conditions was analyzed. The less NO maximum mole fraction was produced during rich combustion (φ > 1). The results provide a new reference for ammonia as an alternative fuel for internal combustion engines.  相似文献   

9.
In this paper, premixed syngas-air flame propagating from the open end to the closed end were experimentally investigated. The effects of equivalence ratios, 0.8 ≤ Ф ≤ 1.2, and hydrogen volume fractions, 10% ≤ α(H2) ≤ 90%, on flame deformation and oscillation had been discussed in detail. The tulip-like flame was observed because of the large pressure gradient. Results indicate that the pressure wave plays an important role in the flame deformation and oscillation. The flame oscillates as hydrogen volume fraction varies. There are two oscillation modes. When the flame oscillates as mode Ⅰ, the flame first oscillates smoothly, then the oscillation is gradually enhanced, and finally the oscillation decays. The interaction of flame and pressure waves continuously stimulates the flame deformation and oscillation, finally the violent flame folding emerges in the later stage. When the flame oscillates as mode Ⅱ, the flame just oscillates violently in the early stage.  相似文献   

10.
The focus of this work is the numerical study of stable and pulsatory flame burst in an undulating geometry, using premixed hydrogen and air (with an equivalence ratio of φ = 1.0). This work extends other works in the literature by considering a linear temperature profile along the wall. This allows an analysis of the flow dynamics without forcing the location of the flame (as is the case with hyperbolic temperature profiles). The interaction between the flow dynamics and the combustion reaction is then analysed, leading to a better understanding of the physics in more general flows.Simulations were performed in OpenFoam using very detailed chemical reactions and different molecular diffusivities for each species. The results obtained show that at low inlet velocity (4 m/s) the flame became stable, and, at higher inlet velocities, the flame showed pulsatory burst dynamics. The interaction between the fluid dynamics and the combustion response proved to be important, especially because of the vortices that are formed due to the nonlinear geometry of the burner. As the inlet velocity increases, the heat release rate transmitted through the vortices decreases and a delay in ignition occurs, as evidenced by a decrease in the pulsatory burst frequency and an increase in the maximum value of the heat release rate (although not sufficient to increase the maximum temperature amplitude).In addition, we also carried out an analyses of the axial velocity and of the H2 and OH mass fractions of the flame dynamics.  相似文献   

11.
In order to achieve ultra-low emissions of both NOX and CO it is imperative to use a homogeneous premixed combustor. To lower the emissions further, the equivalence ratio can be lowered. By doing so, combustion is moved towards the lean blowout (LBO) limit. To improve the blowout characteristics of a burner, heat and radicals can be supplied to the flame zone. This can be achieved using a pre-chamber combustor. In this study, a central body burner, called the RPL (rich-pilot-lean) section, was used as a pre-chamber combustor to supply heat and radicals to a downscaled industrial burner. The flue gas from the RPL is mixed with the surrounding fresh mixture and form a second flame zone. This zone acts as a stabilizer for the investigated burner. The LBO limit was modeled using two perfectly stirred reactors (PSRs) in series, which allows the chemical influence on the LBO limit to be isolated. The resulting trends for the modeled LBO limit were in agreement with measured data. Increasing the equivalence ratio in the RPL section, thus increasing the energy supplied by the fuel, is a major contributor to combustion stability up to a limit where the temperature decrease is too large support combustion. For lean RPL combustion, the reactive species O, H and OH in combination affect the stability to a greater extent than the temperature alone. At rich equivalence ratios, the conversion of methane to hydrogen and carbon monoxide in the RPL section is a factor influencing the LBO limit. The results are compared with emission probe measurements that were used to investigate the LBO limit for methane and a generic syngas (10% CH4, 67.5% H2, and 22.5% CO). The syngas was also investigated after being diluted with nitrogen to a Wobbe index of 15 MJ/m3.  相似文献   

12.
The vortex dynamics behind various magnetic obstacles and characteristics of heat transfer are investigated using a three-dimensional model. In the numerical study, the magnet width (My) is alterable to investigate the instability, Strouhal number, wake structure behind various magnetic obstacles and percentage increment of the overall heat transfer for a wide range of constrainment factors (0.08  κ  0.26), Reynolds numbers (400  Re  900) and interaction parameters (9  N  15). For all constrainment factors, the fundamental frequency (f) is uniform for a particular value of Reynolds number. Downstream cross-stream mixing due to vortex shedding enhances the wall-heat transfer and the maximum value of percentage increment of the overall heat transfer (HI) is about 20.2%. However, the pressure drop penalty (ΔPpenalty) is not increasingly dependent on interaction parameter when Re and κ remain constant.  相似文献   

13.
We investigate the effects of hydrogen addition on Fenimore NO formation in fuel-rich, low-pressure burner-stabilized CH4/O2/N2 flames. Towards this end, axial profiles of temperature and mole fractions of CH and NO are measured using laser-induced fluorescence (LIF). The experiments are performed at equivalent ratios of 1.3 and 1.5, using 0.25 mole fraction of hydrogen in the fuel, while varying the mass flux through the burner. The results are compared with those reported previously for burner-stabilized CH4/O2/N2 flames. The increased burning velocity caused by hydrogen addition is seen to result in a lower flame temperature as compared to methane flame stabilized at the same mass flux. This increase in burner stabilization upon hydrogen addition results in significantly lower CH mole fractions at φ = 1.3, but appears to have little effect on the CH profile at φ = 1.5. In addition, the results show that not only the maximum flame temperature is reduced upon hydrogen addition, but the local gas temperature in the region of the CH profile is lowered as well. The measured NO mole fractions are seen to decrease substantially for both equivalence ratios. Analysis of the factors responsible for Fenimore NO formation shows the reduction in temperature in the flame front to be the major factor in the decrease in NO mole fraction, with a significant contribution from the decrease in CH mole fraction at φ = 1.3. At φ = 1.5, the results suggest that the lower flame temperature upon hydrogen addition further retards the conversion of residual fixed-nitrogen species to NO under these rich conditions as compared to the equivalent methane flames.  相似文献   

14.
To investigate the effect of equivalence ratio and turbulence intensity on the combustion characteristics of syngas/air mixtures, experiments involving premixed combustion of 70% H2/30% CO/air mixtures at various equivalence ratios and turbulence intensities were conducted in a turbulent combustion bomb at atmospheric temperature and pressure. The turbulent burning velocity and flame curvature were used to study turbulent combustion characteristics. The results show that the turbulent burning velocity grew nonlinearly as the equivalence ratio increased, while the normalized turbulent burning velocity tended to decrease. When the equivalence ratio was relatively low, the turbulence intensity was a greater determinant of the burning velocity. The normalized turbulent burning velocity increased as the turbulence intensity increased. Re and Da were found to be directly and inversely proportional to u’/uL, respectively. A linear relationship was observed between uT/uL and ln Re. As the turbulence intensity increased or equivalence ratio decreased, the wrinkle degree of the flame front increased, and the maximum and minimum values of flame front curvature increased and decreased, respectively. Meanwhile, the range of the flame front curvature increased gradually. The proportion of components with smaller absolute value of flame front curvature gradually decreases.  相似文献   

15.
Two-color, two-photon laser-induced polarization spectroscopy (LIPS) of atomic hydrogen has been demonstrated and applied in atmospheric pressure hydrogen/air flames. Fundamental and frequency-doubled beams from a single 486-nm dye laser were used in the experiments. The 243-nm pump beam in the measurements was tuned to the two-photon n=1→n=2 resonance of the hydrogen atom. The 486-nm probe beam was tuned to the single-photon n=2→n=4 resonance of the hydrogen atom. Measurements were performed in an atmospheric pressure H2/air flame stabilized on a near-adiabatic, flat-flame calibration burner (the Hencken burner). For the range of pump beam intensities used, the LIPS signal was found to be nearly proportional to the square of the pump beam intensity over a wide range of flame equivalence ratios. Spectral lineshapes were recorded at flame equivalence ratios ranging from 0.85 to 2.10. Vertical H-atom number density distribution profiles were measured in the Hencken burner. The vertical H-atom number density profiles measured along the burner centerline for various flame equivalence ratios were compared with the results of a numerical flame calculation using the UNICORN (Unsteady Ignition and Combustion with Reactions) code. Good agreement between theory and experiment was obtained for stoichiometric and rich flame conditions. For flames with equivalence ratios greater than 1.5, the H-atom concentration was substantially above the adiabatic equilibrium value, even at 50 mm above the burner surface. The slow approach to the adiabatic equilibrium H-atom concentration value can be explained by assuming partial equilibrium in the postflame gases; the H-atom concentration is proportional to the O2 concentration which requires significant residence time to decrease to its very low equilibrium concentration. These results suggest that the use of the Hencken burner as a radical measurement technique calibration source may be of questionable value for equivalence ratios greater than 1.5 and less than 0.8.  相似文献   

16.
Hydrogen combustion has many industrial applications and development of new hydrogen burners is required to fulfil new demands. A novel configuration of hydrogen burner utilizing crossflow injection of fuel jets into swirling combustion air is characterized empirically in this work. It is intended as a first step in the development of new burner technologies having reduced emission levels and improved efficiency. Experiments were designed using the full factorial design method. Operating parameters were varied simultaneously and the NOX emissions from the flame stabilized on the burner were measured. Statistical analysis of the experimental data showed that overall equivalence ratio is the dominant factor and lower NOX emissions are observed at low equivalence ratios, irrespective of the burner power level. The analysis yielded an empirical relationship among NOX emission, overall equivalence ratio, and power level that is useful in the design activity for a future combustion system based on the proposed configuration.  相似文献   

17.
The turbulent flame topology characteristics of the model syngas with two different hydrogen ratios were statistically investigated, namely CO/H2 ratio at 65/35 and 80/20, at equivalence ratio of 0.7. The combustion pressure was kept at 0.5 MPa and 1.0 MPa, to simulate the engine-like condition. The model syngas was diluted with CO2 with a mole fraction of 0.3 which mimics the flue gas recycle in the turbulent combustion. CH4/air flame with equivalence ratio of 1.0 was also tested for comparison. The flame was anchored on a premixed type Bunsen burner, which can generate a controllable turbulent flow. Flame front, which is represented by the sharp increased interface of the OH radical distribution, was measured with OH-PLIF technique. Flame front parameters were obtained through image processing to interpret the flame topology characteristics. Results showed that the turbulent flames possess a wrinkled character with smaller scale concave/convex structure superimposed on a larger scale convex structure under high pressure. The wrinkled structure of syngas flame is much finer and more corrugated than hydrocarbon fuel flames. The main reason is that scale of wrinkled structure is smaller for syngas flame, resulting from the unstable physics. Hydrogen in syngas can increase the intensity of the finer structure. Moreover, the model syngas flames have larger flame surface density than CH4/air flame, and hydrogen ratio in syngas can increase flame surface density. This would be mainly attributed to the fact that the syngas flames have smaller flame intrinsic instability scale li than CH4/air flame. ST/SL of the model syngas tested in this study is higher than CH4/air flames for both pressures, due to the high diffusivity and fast burning property of H2. This is mainly due to smaller LM and li. Vf of the two model syngas is much smaller than CH4/air flames, which suggests that syngas flame would lead to a larger possibility to occur combustion oscillation.  相似文献   

18.
This study experimentally examined a cylindrical multi-hole premixed burner for its potential use for a condensing gas boiler, which produces less NOx emissions and performs better. In this study, the hole diameters and the arrangement of a multi-hole burner were investigated using a flat burner model. The combustion characteristics for the flame stability as well as the NOx and CO emissions were examined using a cylindrical burner. For an optimal operating condition, the equivalence ratio for the cylindrical burner was between 0.70 and 0.75. For this condition, the turn-down ratio was 3:1 or higher, which was suitable for appropriate control of the boiler operation. The NOx and CO emissions were less than 40 ppm and less than 30 ppm, respectively, for a 0% O2 basis. The LPG and LNG were able to be used in this type of burner because there was no phenomenal difference in the stable combustion region between them.  相似文献   

19.
The gas-phase combustion of fuel-lean methane/air premixtures over platinum was investigated experimentally and numerically in a laminar channel-flow catalytic reactor at pressures 1 bar?p?16 bar. In situ, spatially resolved one-dimensional Raman and planar laser induced fluorescence (LIF) measurements over the catalyst boundary layer were used to assess the concentrations of major species and of the OH radical, respectively. Comparisons between measured and predicted homogeneous (gaseous) ignition distances have led to the assessment of the validity of various elementary gas-phase reaction mechanisms. At low temperatures (900 K?T?1400 K) and fuel-to-air equivalence ratios (0.05?φ?0.50) typical to catalytic combustion systems, there were substantial differences in the performance of the gaseous reaction mechanisms originating from the relative contribution of the low- and the high-temperature oxidation routes of methane. Sensitivity analysis has identified the significance of the chain-branching reaction CHO + M = CO + H + M on homogeneous ignition, particularly at lower pressures. It was additionally shown that C2 chemistry could not be neglected even at the very fuel-lean conditions pertinent to catalytic combustion systems. A gas-phase reaction mechanism validated at 6 bar?p?16 bar has been extended to 1 bar?p?16 bar, thus encompassing all catalytic combustion applications. A reduced gas-phase mechanism was further derived, which when used in conjunction with a reduced heterogeneous (catalytic) scheme reproduced the key catalytic and gaseous combustion characteristics of the full hetero/homogeneous reaction schemes.  相似文献   

20.
The laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas in a wide equivalence ratio range (0.6–5) and initial temperature (298–423 K) was studied by Bunsen burner. The results show that the laminar flame speed first increases and then decreases as the equivalence ratio increasing, which is a maximum laminar flame speed at n = 2. The laminar flame speed increases exponentially with the increase of initial temperature. For different equivalent ratios, the initial temperature effects on the laminar flame speed is different. The initial temperature effects for n = 2 (the most violent point of the reaction) is lower than others. It is found that H, O and OH are affected more and more when the equivalence ratio increase. When the equivalence ratio is far from 2, the reaction path changes, and the influence of initial temperature on syngas combustion also changes. The laminar flame speed of syngas is more severely affected by H + O2 = O + OH and CO + OH = CO2 + H than others, which sensitivity coefficient is larger and change more greatly than others when the initial temperature and equivalence ratio change. Therefore, the laminar flame speed of syngas/air premixed gas is affected by the initial temperature and equivalence ratio. A new correlation is proposed to predict the laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas under the synergistic effect of equivalence ratio and initial temperature (for equivalence ratios of 0.6–5, the initial temperature is 298–423 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号