首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as a ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles. Here, we present new engineering solutions of a MH hydrogen storage tank for fuel cell utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge/discharge. The tank is an assembly of several MH cassettes each comprising several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. The assembly of the MH containers staggered together with heating/cooling tubes in the cassette is encased in molten lead followed by the solidification of the latter. The tank can provide >2 h long H2 supply to the fuel cell stack operated at 11 kWe (H2 flow rate of 120 NL/min). The refuelling time of the MH tank (T = 15–20 °C, P(H2) = 100–150 bar) is about 15–20 min.  相似文献   

2.
The U.S. Department of Energy (DOE) has developed the Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE's Technical Targets using four drive cycles. Metal hydride hydrogen storage models have been developed for the Framework model. Despite the utility of this model, it requires that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter physical and thermodynamic metal hydride properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. This design tool can also be used as a standalone MS Excel model to estimate the storage system mass and volume outside of Framework and compare it to the DOE Technical Targets. This model will be explained and exercised with existing hydrogen storage materials.  相似文献   

3.
This paper describes a technical feasibility study of on-board metal hydride storage systems. The main advantages of these systems would be that of being able to replace counterweights with the weight of the storage system and using the heat emissions of fuel cells for energy, making forklifts a perfect use case. The main challenge is designing a system that supplies the required energy for a sufficiently long period. A first draft was set up and analyzed to provide a forklift based on a fuel cell with hydrogen from HydralloyC5 or FeTiMn. The primary design parameter was the required amount of stored hydrogen, which should provide energy equal to the energy capacity of a battery in an electric vehicle. To account for highly dynamic system requirements, the reactor design was optimized such that the storage was charged in a short time. Additionally, we investigated a system in which a fixed amount of hydrogen energy was required. For this purpose, we used a validated simulation model for the design concepts of metal hydride storage systems. The model includes all relevant terms and parameters to describe processes inside the system's particular reactions and the thermal conduction due to heat exchangers. We introduce an embedded fuel cell model to calculate the demand for hydrogen for a given power level. The resulting calculations provide the required time for charging or a full charge depending on the tank's diameter and, therefore, the necessary number of tanks. We conclude that the desired hydrogen supply times are given for some of the use cases. Accordingly, the simulated results suggest that using a metal hydride system could be highly practical in forklifts.  相似文献   

4.
We describe a metal hydride (MH) hydrogen storage tank for light fuel cell vehicle application developed at HySA Systems. A multi-component AB2-type hydrogen storage alloy was produced by vacuum induction melting (10 kg per a load) at our industrial-scale facility. The MH alloy has acceptable H sorption performance, including reversible H storage capacity up to ∼170 NL/kg (1.5 wt% H). The cassette-type MH tank was made up of 2 cylindrical aluminium canisters with transversal internal copper fins and external aluminium fins for improving the heat exchange between the heating medium and the MH tank. Heat supply and removal was provided from the outside using air at T = 15–25 °C. The MH tank was tested at the conditions of natural or forced (velocity ∼2 m/s) air convection. The tests included H2 charge of the tank at P = 15–40 bar and its discharge at P = 1 bar. The tank in the H2 discharge mode was also tested together with open cathode low-temperature proton exchange membrane fuel cell (LT PEMFC).  相似文献   

5.
In this paper a two-dimensional model of an annular cylindrical reactor filled with metal hydride suitable for hydrogen storage is presented. Comparison of the computed bed temperatures with published experimental data shows a reasonably good agreement except for the initial period. Effects of hydrogen pressure and external fluid temperatures on heat transfer and entropy generation are obtained. Results show that the time required for hydrogen charging and discharging is higher when the thermal capacity of the reactor wall is considered. The time required for absorption and desorption can be reduced significantly by varying the hydrogen gas pressure and external fluid temperatures. However, along with reduction in time the entropy generated during hydrogen storage and discharge increases significantly. Results also show that for the given input conditions, heat transfer between the external fluid and hydride bed is the main source of entropy generation.  相似文献   

6.
In this paper, a performance analysis of a metal hydride based hydrogen storage container with embedded cooling tubes during absorption of hydrogen is presented. A 2-D mathematical model in cylindrical coordinates is developed using the commercial software COMSOL Multiphysics 4.2. Numerical results obtained are found in good agreement with experimental data available in the literature. Different container geometries, depending upon the number and arrangement of cooling tubes inside the hydride bed, are considered to obtain an optimum geometry. For this optimum geometry, the effects of various operating parameters viz. supply pressure, cooling fluid temperature and overall heat transfer coefficient on the hydriding characteristics of MmNi4.6Al0.4 are presented. Industrial-scale hydrogen storage container with the capacity of about 150 kg of alloy mass is also modeled. In summary, this paper demonstrates the modeling and the selection of optimum geometry of a metal hydride based hydrogen storage container (MHHSC) based on minimum absorption time and easy manufacturing aspects.  相似文献   

7.
8.
The high price of hydrogen fuel in the fuel cell vehicle refuelling market is highly dependent on the one hand from the production costs of hydrogen and on the other from the capital cost of a hydrogen refuelling station's components to support a safe and adequate refuelling process of contemporary fuel cell vehicles. The hydrogen storage technology dominated in the vehicle sector is currently based on high-pressure compressed hydrogen tanks to extend as much as possible the driving range of the vehicles. However, this technology mandates the use of large hydrogen compression and cooling systems as part of the refuelling infrastructure that consequently increase the final cost of the fuel. This study investigated the prospects of lowering the refuelling cost of small urban hydrogen vehicles through the utilisation of metal hydride hydrogen storage. The results showed that for low compression hydrogen storage, metal hydride storage is in favour in terms of the dispensed hydrogen fuel price, while its weight is highly comparable to the one of a compressed hydrogen tank. The final refuelling cost from the consumer's perspective however was found to be higher than the compressed gas due to the increased hydrogen quantity required to be stored in fully empty metal hydride tanks to meet the same demand.  相似文献   

9.
In this paper, a three-dimensional hydrogen absorption model is developed to precisely study the hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed 3D simulation results show that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that hydrogen absorption is very efficient early during the hydriding process; thus, the local cooling effect is not influential. On the other hand, non-uniform distributions are predicted at the subsequent absorption stage, which is mainly due to differential degrees of cooling between the vessel wall and core regions. In addition, a parametric study is carried out for various designs and hydrogen feed pressures. This numerical study provides a fundamental understanding of the detailed heat and mass transfer phenomena during the hydrogen absorption process and further indicates that efficient design of the storage vessel and cooling system is critical to achieve rapid hydrogen charging performance.  相似文献   

10.
11.
Metal hydride (MH) hydrogen storage is used in both mobile and stationary applications. MH tanks can connect directly to high-pressure electrolyzers for on-demand charging, saving compression costs. To prevent high hydrogen pressure during charging, hydrogen generation needs to be controlled with consideration for unknown disturbances and time-varying dynamics. This work presents a robust control system to determine the appropriate mass flow rate of hydrogen, which the water electrolyzer should produce, to maintain the gaseous hydrogen pressure in the tank for the hydriding reaction. A control-oriented model is developed for MH hydrogen storage for control system design purposes. A proportional-integral (PI) and an active disturbance rejection control (ADRC) feedback controllers are investigated, and their performance is compared. Simulation results show that both the PI and ADRC controllers can reject both noises from the output measurements and unknown disturbances associated with the heat exchanger. ADRC excels in eliminating disturbances produced by the input mass flow rate, maintaining the pressure of the tank at the charging pressure with little oscillations. Additionally, the parameters estimated by the ADRC's extended state observer was used to predict the state-of-charge (SOC) of the MH.  相似文献   

12.
This paper presents a two-dimensional mathematical model to optimized heat and mass transfer in metal hydride storage tanks (hereinafter MHSTs) for fuel cell vehicles, equipped with finned spiral tube heat exchangers. This model which considers complex heat and mass transfer was numerically solved and validated by comparison with experimental data and a good agreement is obtained.  相似文献   

13.
In this study, a performance analysis of metal hydride reactors (MHRs) based hydrogen storage during absorption process is presented. The study shows the effect of using heat pipe and fins for enhancing heat transfer inside MHRs at various hydrogen supply pressures. Three different cylindrical MHR configurations using LaNi5 as a storage media were adopted including: i) reactor cooled by means of natural convection, ii) reactor equipped with a heat pipe along its central axis, iii) reactor equipped with finned heat pipe. A 3-D mathematical model is developed and utilized to simulate the thermofluidynamic behaviour of a metal hydride bed. The simulation study is conducted by solving simultaneously the energy, mass, momentum, and kinetic differential equations of conservation by using COMSOL multiphysics 5.2a software. Parameters such as hydrogen stored capacity, internal temperature distribution for the reactor, and their duration have been optimized. The model was validated against experimental result which have been previously published by the authors. The obtained results confirmed that the simulation and experimental results reasonably match where the maximum error vlaue was less than 8% at 10-bar hydrogen supply pressure, which proves that the model has efficiently captured the key experimental trends. On the other hand, the MHR design, which is equipped with a finned heat pipe is shown a superior performance as compared to all the other tested configurations in terms of charging time and storage capacity. Therefore, the model can be used as a helpful tool in the optimization of the MHR designs and performance.  相似文献   

14.
In this study, hydrogen storage capacity were analyzed by considering hydrogen absorption test rig depending on some reactor design parameters such as metal hydride particle size, having fins at the tank, hydrogen inlet pressure, inlet radius of the tank, coolant temperature, general convective heat transfer coefficient and wall thickness of the tank. In the specified design parameters of the hydrogen storage system we put these in COMSOL Multiphysics 5.1 software to obtain some approaches in the large scale. All parameters were analyzed using three different metal hydrides of the MmNi4,6Al0,4, LaNi4.75Al0.25 and LaNi5. Some parameters like temperature distribution inside the tank, amount of the hydrogen mass to be stored in the tank, the time durations of them and the variations of the equilibrium pressure of the system were optimized.  相似文献   

15.
A novel method to improve the hydrogen absorption rate in a metal hydride tank is proposed by introducing physical mixing of the metal hydride powder to promote heat removal and accelerate the kinetics of the hydriding process. Experiments were conducted with and without mixing to demonstrate that the hydrogen absorption rate can be improved significantly by mixing. Mixing was achieved by tilting the cylindrical metal hydride tank back and forth by 90° during charging. A mathematical model was also developed to simulate the effects of physical mixing. The model results indicate that physical mixing enhances heat transfer by redistributing the hydride powder from the hot core to the boundary and facilitates heat removal by convection at the tank walls. After validating the model against experimental results, the effect of physical mixing on accelerating hydrogen storage was explored by changing the mixing rate and the convection coefficient at the tank wall, and by increasing the thermal conductivity of the hydride bed by adding aluminum foam. It was found that while higher mixing rates generally improve the absorption rate, the benefits of mixing are reduced for higher convection coefficients, and for higher weight fractions of Al foam. Simulations were also conducted with and without mixing as a function of tank size. The results show that the benefit of physical mixing increases with tank size.  相似文献   

16.
In this paper, a novel 3D flexible tool for simulation of metal hydrides-based (LaNi5) hydrogen storage tanks is presented. The model is Finite Element-Based and considers coupled heat and mass transfer resistance through a non-uniform pressure and temperature metal hydride reactor. The governing equations were implemented and solved using the COMSOL Multiphysics simulation environment. A cylindrical reactor with different cooling system designs was simulated. The shortest reactor fill time (15 min) was obtained for a cooling design configuration consisting of twelve inner cooling tubes and an external cooling jacket. Additional simulations demonstrated that an increase of the hydride thermal conductivity can further improve the reactor dynamic performance, provided that the absorbent bed is sufficiently permeable to hydrogen.  相似文献   

17.
On-board hydrogen storage systems employing high-pressure metal hydrides promise advantages including high volumetric capacities and cold start capability. In this paper, we discuss the development of a system simulation model in Matlab/Simulink platform. Transient equations for mass balance and energy balance are presented. Appropriate kinetic expressions are used for the absorption/desorption reactions for the Ti1.1CrMn metal hydride. During refueling, the bed is cooled by passing a coolant through tubes embedded within the bed while during driving, the bed is heated by pumping the radiator fluid through same set of tubes. The feasibility of using a high-pressure metal hydride storage system for automotive applications is discussed. Drive cycle simulations for a fuel cell vehicle are performed and detailed results are presented.  相似文献   

18.
Metal hydrides can store hydrogen at high volumetric efficiencies. As the process of charging hydrogen into a metal powder to form its hydride is exothermic, the heat released must be removed quickly to maintain a rapid charging rate. An effective heat removal method is to incorporate a heat exchanger such as a heat pipe within the metal hydride bed. In this paper, we describe a two-dimensional numerical study to predict the transient heat and mass transfer in a cylindrical metal hydride tank embedded with one or more heat pipes. Results from a parametric study of hydrogen storage efficiency are presented as a function of storage tank size, water jacket temperature and its convective heat transfer coefficient, and heat pipe radius and its convective heat transfer coefficient. The effect of enhancing the thermal conductivity of the metal hydride by adding aluminum foam is also investigated. The study reveals that the cooling water jacket temperature and the heat pipe's heat transfer coefficient are most influential in determining the heat removal rate. The addition of aluminum foam reduces the filling time as expected. For larger tanks, more than one heat pipe is necessary for rapid charging. It was found that using more heat pipes of smaller radii is better than using fewer heat pipes with larger radii. The optimal distribution of multiple heat pipes was also determined and it is shown that their relative position within the tank scales with the tank size.  相似文献   

19.
Metal Hydrides (MH) can absorb large quantities of hydrogen at room temperature and ordinary pressure. Because MH can store hydrogen at a pressure less than 0.1 MPa safely and compactly, it is looked to as a method of storing hydrogen produced by electricity derived from renewable energy sources. To study this method of storing renewable energy, we made a MH tank system which could store hydrogen in the range of 1000 Nm3. A Mm-NiMnCo alloy was used for this MH tank system. MH becomes pulverized with absorbing and desorbing hydrogen, and this causes the problem of MH tank transformation owing to the partial distribution of the pulverized MH powders. Our MH material, named “Hydrage?,” was made using a technique to compose the MH powders with polymer materials without decreasing the hydrogen absorption and desorption rate. With this technique, the MH powders were immobilized, and strain on the MH tank was reduced. Furthermore, this technique enabled uniform dispersion of the MH powders, and high-density filling in MH tank was achieved relative to that attainable in a conventional MH tank. An MH tank system with a capacity of 1000 Nm3 is 1,800 mm in width, 3,150 mm in length, and 2,145 mm in height. The system for renewable energy storage consists of 9 tanks. About 7.2 tons of MH were used in this system. This system could work at temperatures from 25 to 35° C, and its maximum hydrogen absorption and desorption rate is 70 Nm3/h with a medium flow rate of 30 NL/min. This type of MH tank system, which can store a large amount of hydrogen safely and compactly, has the potential to become popular with various applications in the future.  相似文献   

20.
Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage demonstration system using sodium alanates. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号