首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyethyleneimine (PEI) microgels prepared via microemulsion polymerization are protonated by hydrochloric acid treatment (p‐PEI) and quaternized (q‐PEI) via modification reaction with methyl iodide and with bromo alkanes of different alkyl chain lengths such as 1‐bromoethane, 1‐bromobutane, 1‐bromohexane, and 1‐bromooctane. The bare p‐PEI and q‐PEI microgels are used as catalysts directly without any metal nanoparticles for the methanolysis reaction of sodium borohydride (NaBH4). Various parameters such as the protonation/quaternization reaction on PEI microgels, the amount of catalyst, the amount of NaBH4, and temperature are investigated for their effects on the hydrogen (H2) production rate. The reaction of self‐methanolysis of NaBH4 finishes in about 32.5 min, whereas the bare PEI microgel as catalyst finishes the methanolysis of NaBH4 in 22 min. Surprisingly, it is found that when the protonated PEI microgels are used as catalyst, the same methanolysis of NaBH4 is finished in 1.5 min. The highest H2 generation rate value is observed for protonated PEI microgels (10 mg) with 8013 mL of H2/(g of catalyst.min) for the methanolysis of NaBH4. Moreover, activation parameters are also calculated with activation energy value of 23.7 kJ/mol, enthalpy 20.9 kJ/mol, and entropy ?158 J/K.mol. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Polymeric microgels were prepared from dextran (Dex) by crosslinking linear natural polymer dextran with divinyl sulfone (DVS) with a surfactant-free emulsion technique resulting in high gravimetric yield of 78.5 ± 5.3% with wide size distribution. Dex microgels were chemically modified, and then used as catalyst in the methanolysis of NaBH4 to produce H2. The chemical modification of Dex microgel was done on epichlorohydrin (ECH)-reacted Dex microgels with ethylenediamine (EDA), diethylenetriamine (DETA), and triethylenetetraamine (TETA) in dimethylformamide (DMF) at 90°C for 12 hours. The modified dextran-TETA microgels were protonated using treatment with hydrochloric acid (HCl) and m-Dex microgels-TETA-HCl was found to be a very efficient catalyst for methanolysis of NaBH4 to produce H2. The effects of reaction temperature and NaBH4 concentration on H2 generation rates were investigated and m-Dex microgels-TETA-HCl catalyst possessed excellent catalytic performances with 100% conversion and 80% activity at end of 10 consecutive uses and was highly re-generatable with simple HCl treatment. Interestingly, m-Dex microgels-TETA-HCl catalyst can catalyze NaBH4 methanolysis reaction in a mild temperature range 0 to 35°C with Ea value of 30.72 kJ/mol and in subzero temperature range, −20 to 0°C with Ea value of 32.87 kJ/mol, which is comparable with many catalysts reported in the literature.  相似文献   

3.
The natural, most abundant sulfide mineral of pyrite was modified using polyethyleneimine (PEI) for use as a catalyst in H2 release reactions from NaBH4 in methanol. The catalytic performances of pyrite, pyrite-PEI, and protonated pyrite-PEI (pyrite-PEI+) were compared and the hydrogen generation rate (HGR) values of 795 ± 26, 2883 ± 190, and 4320 ± 188 mL H2/(g of catalyst x min)−1 were measured for H2 production from NaBH4 methanolysis. The effect of methanol:water mixture at various ratios, the amount of catalyst, the concentration of NaBH4, and temperature on H2 production from NaBH4 in methanol catalyzed by pyrite-PEI+ were investigated. The activation energies for pyrite-PEI, and pyrite-PEI+ catalyzed H2 release reactions were calculated as 47.2 and 36.8 kJ/mol, respectively. It was found that the activity % for the pyrite-PEI+ catalyst decreased to 76.2 ± 2.7% after five consecutive uses with 100% conversion for each re-use study. Furthermore, the re-generation of pyrite-PEI+ catalyst after the 5th usage was readily ensured by HCl treatment to completely recover and further increase the activity% of the catalyst. Therefore, pyrite was shown to be a useful re-generable and economic green catalyst for H2 production in many potential applications.  相似文献   

4.
5.
Poly[2-(dimethylamino)ethyl methacrylate] cryogel beads were prepared under cryogenic conditions via free radical polymerization and used as a catalyst in the production hydrogen (H2) from NaBH4 by alcoholysis. The efficiency of the catalyst was investigated in the range of 0–40 °C by both methanolysis and ethylene glycolysis reactions, and its reuse was tested. Accordingly, it was observed that the methanolysis reaction was faster than the ethylene glycolysis reaction. When the hydrogen generation rate (HGR) values between 0 and 40 °C were compared, it was concluded that the methanolysis reaction rate increased from 1550 to 4800 mL.min−1g−1 and the ethylene glycolysis reaction rate increased from 923 to 3551 mL.min−1g−1. In the alcoholysis reaction catalyzed by PDMA cryogel beads, the activation energy was calculated as 19.34 and 22.77 kJ.mol−1 for the methanolysis and ethylene glycolysis reactions, respectively. After six repetitions, the catalyst activity was calculated over 50% for NaBH4 methanolysis and ethylene glycolysis.  相似文献   

6.
Poly(3-sulfopropyl methacrylate) (p(SPM)) cryogel was prepared under cryogenic conditions (T = −18 °C) and used as template for in situ metal nanoparticle preparation of Co, Ni and Cu. These metal nanoparticle-containing super macroporous cryogel composites were tested for H2 production from hydrolysis of sodium borohydride (NaBH4) and ammonia borane (AB). It was found that amongst p(SPM)-M (M: Co, Ni, and Cu) composite catalyst systems, the catalytic performances of Co- and Ni-containing p(SPM) cryogel composite catalyst systems were the same, however in hydrolysis of NH3BH3, the order of performance of the catalysts was Co > Ni > Cu. Interestingly, p(SPM)-Co cryogel composite demonstrated better catalytic performances in salt environments e.g., faster H2 production rate in sea and tap water compared to DI water, and almost no effect of ionic strength of the solution medium was observed, but the salt types were found to affect the H2 generation rate. Other parameters that affect H2 production rate such as metal type, temperature, water source, salt concentration, amount of metal nanocatalyst and reusability were investigated. It was found that the hydrogen generation rate (HGR) was increased to 2836 ± 90 from 1000 ± 53 (ml H2)(g of Co min)−1 by multiple loading and reduction cycles of Co catalyst. Also, it was found that TOF values are highly temperature dependent, and increased to 15.1 ± 0.8 from 2.4 ± 0.1 (mol H2)(mol catalyst min)−1 by increasing the temperature from 30 to 70 °C. The activation energy, activation enthalpy and activation entropy were determined as 40.8 kJ (mol)−1, 37.23 kJ (mol K)−1, and −170.87 J (mol K)−1, respectively, for the hydrolysis reaction of NaBH4 with p(SPM)-Co catalyst system, and 25.03 kJ (mol)−1, 22.41 kJ (mol K)−1, and −182.8 J (mol K)−1, respectively, for AB hydrolysis catalyzed by p(SPM)-Co composite system.  相似文献   

7.
Ru-Co nanoparticles prepared in nano-size by combustion derived of citric acid used sol-gel technique followed by calcination process at 450 °C. The external and internal properties of nano-sized catalyst were characterized by XRD, XPS, SEM, TEM, ICP-OES, and N2 sorption techniques. The characterization results proved that nano-sized catalyst was mixture of cubic Co3O4 (18 nm) and tetragonal RuO2 (40 nm) crystals with mesoporous structure (12.64 m2g-1). Insight into the role of solvents for enhancing hydrogen production from Ru-Co nanoparticles catalyzed sodium borohydride (NaBH4, SBH) was systematically studied by altering the dehydrogenation medium with water or methanol. The reaction kinetic performance of nano-sized catalyst was evaluated by performing both hydrogen generation reactions at various reaction temperatures, initial SBH concentration, and catalyst dosage to evaluate the hydrogen generation activity. Ru-Co nanoparticles exhibited exclusive catalytic performance for hydrogen generation by hydrolysis and methanolysis of SBH. The apparent activation energies (Ea) for the catalytic hydrolysis and methanolysis of SBH over Ru-Co nanoparticles were determined to be 20.02 kJ mol−1 and 54.38 kJ mol−1, respectively. Furthermore, Ru-Co nanoparticles also performed satisfied stability for both hydrolysis and methanolysis reactions. Beside both hydrogen generation was achived with fully conversion of SBH, Ru-Co nanoparticles promised good recyclability for at least 5 cycle for methanolysis of SBH.  相似文献   

8.
Two-dimensional catalysts, which are sensitive to visible light and have a photothermal effect, can be used to catalyse the release of H2 from sodium borohydride (NaBH4) are being actively explored in energy saving systems. In this work, oxygen vacancy enriched two-dimensional CoFe-layered double hydroxide (CoFe-LDH) derivatives (named as CoFe-x °C, x = 200–500) have been explored for NaBH4 hydrolysis catalyzed by photo-thermal synergy without external heat source. The CoFe-300 °C presents its initial hexagonal lamellar structure and has the highest concentration of oxygen vacancy. These unique properties guarantee its excellent photo-thermal synergistic catalytic performance, achieving hydrogen production rate of 1877.5 mmol g−1 h−1, and maintains high efficiency after 5 cycles. This enhanced photo-thermal synergistic catalytic mechanism is the •OH (generated from h+ and H2O) attacks BH4 (absorbed on Ov sites) to produce H2, the heat from photothermal conversion accelerates the adsorption ability and attacking rate. This study opens a new strategy for the synergistic photo-thermal catalytic hydrolysis of NaBH4.  相似文献   

9.
The monodispersed poly(2-vinyl pyridine) (p(2-VP)) and poly(2-vinyl pyridine-co-4-vinyl pyridine) (p(2-VP-co-4-VP)) particles of different compositions were synthesized by a surfactant-free emulsion polymerization system using divinyl benzene (DVB) as cross-linker. The diameter of p(2-VP) and p(2-VP-co-4-VP) particles were measured between 370 and 530 nm. Co, Ni and Cu metal nanoparticles were prepared inside these microgels after quaternization with HCl and loading of metal salts, such as CoCl2, NiCl2, and CuCl2, in ethyl alcohol followed by reduction with NaBH4. The prepared metal nanoparticles within these particles were used as catalyst for H2 production via hydrolysis of NaBH4 and NH3BH3. Various parameters of the polymeric microgels such as template, metal types, reuse, the amount of NaOH, and temperature were investigated. From hydrolysis reactions the activation energy (Ea), enthalpy (ΔH), and entropy (ΔS) were calculated for Co metal nanoparticles as catalyst for the NaBH4 hydrolysis reaction in the temperature range of 0–50 °C. The activation parameters of NaBH4 hydrolysis catalyzed by Co nanoparticle composite systems were calculated as 46.44 ± 1.1 kJ mol−1 for Ea, 36.39 ± 6.5 kJ mol−1 for ΔH and −170.56 ± 20.1 kJ mol−1 K−1 for ΔS.  相似文献   

10.
In the present work, a SiO2@PAA catalyst for NaBH4 methanolysis composed of silica nanoparticles modified with poly(acrylic acid) has been developed. The morphology and composition of the prepared SiO2@PAA catalyst were analyzed with transmission electron microscopy, Fourier transform-infrared spectroscopy, x-ray photoelectron spectroscopy and thermogravimetric analysis. This catalyst showed excellent catalytic performance for methanolysis of NaBH4. The NaBH4 methanolysis reaction catalyzed by SiO2@PAA showed an average hydrogen generation rate 5.5 times as high as the reaction catalyzed by unmodified SiO2 and 10.6 times as high as the uncatalyzed reaction, respectively. The activation energy for methanolysis of NaBH4 catalyzed by this SiO2@PAA catalyst was 24.03 kJ/mol. Moreover, although the catalytic activity of SiO2@PAA catalyst partially lost after being used, it could be restored after being regenerated by washing with diluted hydrochloric acid solution.  相似文献   

11.
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

12.
Metal ion-imprinted (IIH) poly(2-acrylamido-2-methyl-1-propansulfonic acid) p(AMPS) hydrogels were prepared by using a free-radical polymerization technique in the presence of metal ions (M = Co (II) or Ni (II)). Using metal ion-imprinted hydrogels (IIHs), and non-metal ion-imprinted (NIH) hydrogels as template for the preparation of Co and Ni catalyst systems, the hydrolysis kinetics of NaBH4 and NH3BH3 were investigated. The catalytic performances of IIHs and NIHs were compared in terms of effect on hydrolysis kinetics of NaBH4 and NH3BH3. To increase the amounts of Co nanoparticles within p(AMPS) hydrogel for better catalytic activity, several reloading and reduction cycles of Co (II) ions were carried out, and the prepared p(AMPS)-Co composite catalyst systems were tested for hydrogen generation from the hydrolysis of NaBH4. As the number of Co (II) loading and reduction cycles increased, the amount of metal catalysts and the catalytic performance of composites increased. Kinetics studies were carried out on three times Co (II) ion loaded and reduced p(AMPS)-Co catalyst systems (containing 36.80 mg/g Co). Three time Co (II)-loaded catalyst systems provided very fast hydrolysis kinetics for NaBH4, and provided magnetic field responsive behavior. The hydrolysis reaction of NaBH4 was completed within 50 s, under the described conditions at 60 °C. It was demonstrated that the synthesized catalyst systems can be used ten times repetitively without significant loss of catalytic activity (86.5%).  相似文献   

13.
Water beads made from polyacrylamide polymer p-(AAm) were decorated with high efficient metal nanoparticles by inexpensive, fast, simple, and environmental friendly method. These water beads balls were kept in the metal salt solutions for 4 h; to adsorb the metals ions from these aqueous solutions. The metal ions decorated on the p-(AAm) water beads were converted to metal nanoparticles by its reduction with aqueous solution of NaBH4. The prepared materials p-(AAm) loaded with MNPs (M@p-(AAm)) were characterized by ATR-FTIR, XRD, XPS, FESEM, and EDS which show the successful preparation of MNPs over the surface and within p-(AAm). Afterwards the M@p-(AAm) were investigated as a catalyst for the generation of hydrogen from the methanolysis of NaBH4. The Ag@p-(AAm) show good catalytic activity for NaBH4 methanolysis reaction as compared to the other loaded MNPs. In addition, different parameters which effecting H2 generation were also investigated such as; MNPs types, catalyst amount and temperature of the reaction. Low activation energy (Ea) of 21.37 ± 0.67 kJ mol−1, was calculated for NaBH4 methanolysis reaction at temperature ranging from 5.0 °C to 35 °C. Moreover, the catalyst reusability was also studied and found no decrease in percent conversion, however percent efficiency was decreases about 37% after completion of four cycles.  相似文献   

14.
Highly porous p(2-hydroxyethyl methacrylate) p(HEMA) cryogels were synthesized via cryopolymerization technique and used as template for Co, Ni, and Cu nanoparticle preparation, then as composite catalyst systems in H2 generation from hydrolysis of both NaBH4 and NH3BH3. Due to their highly porous and open microstructures, p(HEMA)-Co cryogel composites showed very effective performances in H2 production from hydrolysis of both chemical hydrides. The characterization of p(HEMA) cryogels, and their metal composites was determined via various techniques including swelling experiments, digital camera images, SEM and TEM images, AAS and TGA measurements. The effect of various parameters on the hydrolysis reaction of NaBH4 such as metal types, concentration of chemical hydrides, amounts of catalyst, alkalinity of reaction medium and temperature were investigated in detail. It was found that Co nanoparticles are highly active catalysts in H2 generation reactions from both hydrides. The hydrogen generation rate (HGR) of p(HEMA)-Co was 1596 (mL H2) (min)−1 (g of Co)−1 which is quite good in comparison to reported values in the literature. Furthermore, kinetic parameters of p(HEMA)-Co metal composites such as energy, enthalpy and entropy were determined as Ea = 37.01 kJmol−1, ΔH# = 34.26 kJmol−1, ΔS# = −176,43 Jmol−1 K−1, respectively.  相似文献   

15.
In this research study, orange peel-based biocatalysts developed from different acid protonation were used as a metal-free catalyst for hydrogen production from sodium borohydride (NaBH4). In order to prepare the orange peel-based biocatalyst with higher catalytic activity, experiments were conducted with pure orange peel, different acid molar concentrations, and calcination temperatures. The physical morphology, surface texture, and chemical interaction were thoroughly analyzed by XRD, FTIR Raman, FESEM, BET, and TGA. As a result of the experiment, it was determined that the highly acid-treated biocatalyst (40% H3PO4, 40% H2SO4, 40% HCl) and calcinated at 450 °C for 1 h had higher catalytic activity. As a result, bio-hydrogen production at 35 °C and 70 °C methanolysis with 3% NaBH4 catalyzed by a mixture of acid-treated catalysts were found as 46,213 and 63,842 ml min−1g.cat−1, respectively. However, with the increase of molar concentration of biocatalyst with 40% individual acid prolonged samples, the HGR rates will not have a satisfactory value in comparison with the 40% mixture of the acid-treated catalyst due to less number of active sites.  相似文献   

16.
In this study, the metallurgic sludge which contained oil and was obtained as waste of grinding, sharpening and milling parts was used in the production of hydrogen (H2) from sodium borohydride (NaBH4). The hydrolysis of NaBH4 with the metallurgic sludge catalyst was investigated depending on several parameters such as sodium hydroxide (NaOH) concentration, catalyst amount, NaBH4 concentration and temperature. The obtained metallurgic sludge catalyst was characterized by the XRD, FT-IR and SEM techniques and was evaluated for its activity in the H2 generation from NaBH4 hydrolysis. The maximum H2 production rate from the hydrolysis of NaBH4 with the metallurgic sludge catalyst was calculated as 9366 ml min−1.gcat−1. The value of activation energy was found as 48.05 kJ mol−1.  相似文献   

17.
Hydrogen gas has been considered as one of the promising sources of energy. Thus, several strategies including the hydrolysis of hydrides have been reported for hydrogen production. However, effective catalysts are highly required to improve the hydrogen generation rate. Two dimensional metal-organic frameworks (copper-benzene-1,4-dicarboxylic, CuBDC), and CuBDC-derived CuO@C were synthesized, characterized and applied as catalysts for hydrogen production using the hydrolysis and methanolysis of sodium borohydride (NaBH4). CuBDC, and CuO@C display hydrogen generation rate of 7620, and 7240 mlH2·gcat−1· min−1, respectively for hydrolysis. While, CuBDC offers hydrogen generation rate of 9060 mlH2·gcat−1· min−1 for methanolysis. Both catalysts required short reaction time, and showed good recyclability. The materials may open new venues for efficient catalyst for energy-based applications.  相似文献   

18.
Polymeric catalysts have displayed great performance for catalytic hydrogen generation. However, the reported metal free polymeric catalysts for NaBH4 methanolysis are mainly limited to coating strategy where the catalytic activity fade after few cycles. Herein, we report an interpenetrating polymer network (IPN) strategy for rapid and highly recyclable NaBH4 catalytic methanolysis to produce hydrogen (H2) gas. In this study, we prepared poly(acrylic acid)/polysaccharide IPN via Pickering tempted polymerization. The hydrogen generation performance was studied employing different parameters where maximum HGR of 8182 mL H2 min?1 g?1 of CAP. The activation energy Ea, enthalpy and entropy were calculated to be 62.99 kJ mol?1, 32.25 kJ mol and ?130.92 J mol K?1, respectively. Above all, CAP kept cyclic performance to 100% even at the 7th cycle. We confirmed the reproducibility of approach with other natural polysaccharides. This was due to strong chain entanglement of IPN synthesis which forces the active sites to stay in place during cyclic catalysis reaction. Thus, the IPN strategy ensures longer catalyst life for catalytic methanolysis of NaBH4 for H2 generation.  相似文献   

19.
The introduction of magnetism into a catalyst can greatly optimize its separation performance. In the present work, a kind of magnetically separable catalysts for promoting NaBH4 hydrolysis have been fabricated by anchoring cobalt nanoparticles on magnetic dendritic KCC-1 nanospheres composed of magnetic Fe3O4 core and fibrous shell. The fabricated catalysts were characterized with various characterization methods, including absorption spectroscopy (AAS), scanning electron microscopy (SEM), high-resolution transmission electronic microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), and Fourier transform infrared (FT-IR), etc. This kind of catalysts exhibit high catalytic activity for promoting the hydrolysis of NaBH4 under alkaline conditions, giving a hydrogen generation rate and activation energy of 3.83 L min−1 gCo−1 (30 °C) and 53.63 kJ mol−1, respectively. After used for 5 cycles, the catalyst showed 36.5% catalytic activity reserved. Most importantly, the magnetism of the catalyst made it easily separated and recycled from the solution after the reaction completed. The development of this kind of catalysts could provide a promising option for catalyzing NaBH4 hydrolysis for portable hydrogen production from.  相似文献   

20.
Herein, the CoB catalyst supported on the sepiolite clay treated with phosphoric acid was utilized to produce hydrogen from the NaBH4 hydrolysis. In order to analyse the performance of the phosphoric acid treated sepiolite clay supported-CoB catalyst, the NaBH4 concentration effect, phosphoric acid concentration effect, phosphoric acid impregnation time effect, CoB catalyst percentage effect, and temperature effect were studied. In addition, XRD, XPS, SEM, TEM, BET, and FTIR analysis were performed for characterization of Co–B catalyst supported on the acid-treated sepiolite. The completion time of this hydrolysis reaction with Co–B (20%) catalyst supported on the sepiolite treated by 5 M phosphoric acid was approximately 80 min, whereas the completion time of this hydrolysis reaction with acid-free sepiolite-supported Co–B (20%) catalyst was approximately 260 min. There is a five-fold increase in the maximum production rate. The maximum hydrogen production rates of this hydrolysis reaction at 30 and 60 °C were found as 1486 and 5025 ml min−1g−1catalyst, respectively. Activation energy was found as 21.4 kJ/mol. This result indicates that the acid treatment on sepiolite is quite successful. The re-usability of NaBH4 hydrolysis reaction by CoB catalyst supported on sepiolite treated phosphoric acid for successive five cycles of NaBH4 at 30 °C was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号