首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A micro-combined cooling heating and power (CCHP) system integrated with geothermal-assisted methanol reforming and incorporating a proton exchange membrane fuel cell (PEMFC) stack is presented. The novel CCHP system consists of a geothermal-based methanol steam reforming subsystem, PEMFC, micro gas turbine and lithium bromide (LiBr) absorption chiller. Geothermal energy is used as a heat source to drive methanol steam reforming to produce hydrogen. The unreacted methanol and hydrogen are efficiently utilized via the gas turbine and PEMFC to generate electricity, respectively. For thermodynamic and economic analysis, the effects of the thermodynamic parameters (geothermal temperature and molar ratio of water to methanol) and economic factors (such as methanol price, hydrogen price and service life) on the proposed system performance are investigated. The results indicate that the ExUF (exergy utilization factor the exergy utilization factor), TPES (trigeneration primary energy saving) and energy efficiency of the novel system can be reached at 8.8%, 47.24% and 66.3%, respectively; the levelized cost of energy is 0.0422 $/kWh, and the annual total cost saving ratio can be reached at 20.9%, compared with the conventional system. The novel system achieves thermodynamic and economic potential, and provides an alternative and promising way for efficiently utilizing abundant geothermal energy and methanol resources.  相似文献   

2.
In this study, we conceptually develop and thermodynamically analyze a new continuous-type hybrid system for hydrogen production which photoelectrochemically splits water and performs chloralkali electrolysis. The system has a potential to produce hydrogen efficiently, at low cost, and in an environmentally benign way by maximizing the utilized solar spectrum and converting the byproducts into useful industrial commodities. Furthermore, by using electrodes as electron donors to drive photochemical hydrogen production, the hybrid system minimizes potential pollutant emissions. The products of the hybrid system are hydrogen, chlorine and sodium hydroxide, all of which are desired industrial commodities. The system production yield and efficiencies are investigated based on an operation temperature range of 20 °C–80 °C. A maximum energy efficiency of 42% is achieved between the temperatures of 40 °C and 50 °C.  相似文献   

3.
A typical problem in Northeast China is that a large amount of surplus electricity has arisen owing to the serious photovoltaic power curtailment phenomenon. To effectively utilize the excess photovoltaic power, a hybrid energy system is proposed that uses surplus electricity to produce hydrogen in this paper. It combines solar energy, hydrogen production system, and Combined Cooling Heating and Power (CCHP) system to realize cooling, heating, power, and hydrogen generation. The system supplies energy for three public buildings in Dalian City, Liaoning Province, China, and the system configuration with the lowest unit energy cost (0.0615$/kWh) was obtained via optimization. Two comparison strategies were used to evaluate the hybrid energy system in terms of unit energy cost, annual total cost, fossil energy consumption, and carbon dioxide emissions. Subsequently, the annual total energy supply, typical daily loads, and cost of the optimized system were analyzed. In conclusion, the system is feasible for small area public buildings, and provides a solution to solve the phenomenon of photovoltaic power curtailment.  相似文献   

4.
In this study, we investigate a solar-assisted biomass gasification system for hydrogen production and assess its performance thermodynamically using actual literature data. We also analyze the entire system both energetically and exergetically and evaluate its performance through both energy and exergy efficiencies. Three feedstocks, namely beech charcoal, sewage sludge and fluff, are considered as samples in the same reactor. While energy efficiencies vary from 14.14% to 27.29%, exergy efficiencies change from 10.43% to 23.92%. We use a sustainability index (SI), as a function of exergy efficiency, to calculate the impacts on sustainable development and environment. This index changes from 1.12 to 1.31 due to intensive utilization of solar energy. Also, environmental impact of these systems is evaluated through calculating the specific greenhouse gas (GHG) emissions. They are determined to be 17.97, 17.51 and 26.74 g CO2/MJ H2 for beech charcoal, sewage sludge and fluff, respectively.  相似文献   

5.
A solar energy and high temperature proton exchange membrane fuel cell (PEMFC)-based micro-combined cooling, heating and power (CCHP) system (named system I) is proposed in this work. This system mainly consists of a PEMFC subsystem, an organic Rankine cycle (ORC) subsystem and a vapor compression cycle (VCC) subsystem. System I would reduce to a high temperature PEMFC-based CCHP system (named system II) if there was no solar energy. With the technical performance analysis models developed, the effects of the current density, operating temperature, solar radiation intensity and ambient temperature on the thermal, economic and environmental performances of the systems are theoretically analyzed. The results show that the current density and solar radiation intensity are the main impact factors that can significantly affect the thermal, economic and environmental performances, while the operating temperature and ambient temperature only have remarkable influences on the thermal performance. The coefficient of performance (COP) of system II is approximately 1.19 in summer and 1.42 in winter, which is always higher than that of system I under the same working conditions. The exergy efficiency of system I and system II are approximately 49.7% and 47.4%, respectively. The primary energy saving rates (PESRs) of system I and system II are 64.9% and 31.8% in summer, and 60.0% and 36.2% in winter, respectively. The payback periods of system I and system II are 9.6 yr and 6.0 yr without government subsidy, respectively. Compared with system II, the pollutant emission reduction rates (ERRs) of system I can be increased by approximately 8.4%–23.5% with the addition of solar energy, which indicates that the development and utilization of clean and renewable energy such as solar energy can significantly reduce pollutant emissions.  相似文献   

6.
In this paper the energetic optimization of a proton exchange membrane fuel cell integrated with a steam reforming system using ethanol as fuel is analysed. In order to obtain high hydrogen production, a thermodynamic analysis of the steam reforming process has been carried out and the optimal operating conditions has been defined. Moreover, the overall efficiency of the PEMFC-SR system has been investigated as a function of the fuel utilization factor and the effects of the anodic off-gas recirculation have been evaluated.  相似文献   

7.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

8.
This study addresses the solar thermal cracking of methane for the co-production of hydrogen and carbon black as a medium to avoid CO2 emissions from natural gas combustion processes. The objective of this work is to numerically simulate the transport processes of momentum heat and mass in an indirect heating solar reactor, which is fed with an argon-methane mixture. The reactor is composed of a cubic cavity receiver, which absorbs concentrated solar irradiation through a quartz window and a graphite reaction tube is settled vertically inside this cavity. A series of numerical experiments were carried out in order to gain a better understanding of the interaction between the several transport phenomena taking place. The simulations showed that, in general, when the temperature of the reaction chamber is higher than 2000 K, the methane conversion is practically 100%. To validate our simulation results we compared them with available experimental data obtaining good agreement. Moreover, our results clearly evidence that most of the reaction takes place at the bottom of the reactor, which is the zone with the highest temperature profiles. Therefore, we propose modifications in the reactor design to increase conversion. The results of this work can thus serve to improve design and control of solar reactors for light hydrocarbons.  相似文献   

9.
In the present paper, a new energy generation system is suggested for multiple outputs, including a hydrogen generation unit. The plant is powered by a solar tower and involves six different subsystems; supercritical carbon dioxide (sCO2) re-compression Brayton cycle, ammonia-water absorption refrigeration cycle, hydrogen generation, steam generation, drying process, and thermoelectric generator. The thermodynamic assessment of the multi-generation system is carried out for three different cities from Turkey, Iran, and Qatar. The energy and exergy efficiencies are calculated for base conditions to compare the different locations. The operating output parameters for the suggested system and simple re-compression Brayton system are compared. A parametric analysis is also done for investigating the influences of different system variables on plant performance. According to the results, Doha city is found to be more effective due to its geographical conditions. Moreover, based on the comparative study, the proposed cycles produce more power than the basic re-compression cycle with 64.59 kW, 47.33 kW, and 52.25 kW for Doha, Isparta, and Tehran, respectively. Additionally, the analyses revealed that in the term of energy efficiency, the suggested system has 32.29%, 32.28%, and 32.29% better performance than the simple cycle, and in terms of exergy efficiency, it has 4%, 4.8%, and 5% better performance than the simple cycle in Doha, Isparta, and Tehran, respectively.  相似文献   

10.
This paper describes the development of a hybrid Proton Exchange Membrane Fuel Cell (PEMFC) electric vehicle consisting of a 3 kW PEMFC, PV arrays, secondary battery sets, and a chemical hydrogen generation system. We first integrate a hybrid PEMFC electric vehicle and design power management strategies. The on-board hydrogen generation system can provide sufficient hydrogen for continuous operation of the PEMFC, and the performance tests demonstrate the effectiveness of the integrated system in providing sustainable power for driving. We then use Matlab/SimPowerSystem? to develop a simulation model and adjust the model parameters using experimental data. The results indicated that the model can effectively predict system responses and can be used for performance evaluation. We also use the simulation model to estimate the mileage and costs of the developed electric vehicle, and we discuss the impacts of component sizes on system costs and travelling ranges.  相似文献   

11.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

12.
Autonomous hybrid power systems are attractive research questions that deliver electricity to isolated consumers without being connected to the power grid. The deployment of autonomous hybrid power systems is considered as an option to improve energy security. For this reason, the main objective is to ensure the efficient production of electricity without interruption. To achieve this goal, we have proposed an accurate simulation system in which a solar energy component serves as a primary load supply, and an energy recovery component is based on a fuel cell. A long-term energy storage component comprises a water electrolyzer which is considered a primary storage and an ultracapacitor storage component deployed as a short-term storage of energy. To achieve the correct system operation, a new schema approach for intelligent energy management based on a multi-agent system is developed and discussed. The main task is to define the architecture of the multi-agent system and to define the functions of all the agents according to the characteristics of the energy needs and the production costs. Thus, in order to prove the reliability and effectiveness of the applied control strategy and its impact on the operation of the system, the proposed system is simulated using the Matlab/Simulink environment by referring to an extracted experimental database of the Tunisian Meteorological Service.  相似文献   

13.
This study develops, investigates and analyze a continuous type hybrid photoelectrochemical-chloralkali H2 production reactor that converts the by–products into useful industrial commodities (i.e., Cl2 and NaOH). The proposed system maximizes solar spectrum use by taking advantage of photocatalysis and PV/T. Furthermore, by using electrodes as electron donors to support the photochemical reaction, the potential risk of pollutant emissions is minimized. The final products of this novel integrated system can be listed as H2, Cl2, NaOH, heat, and electricity. In this study, the effects of operating temperature and inlet mass flow rates on H2, Cl2, heat, and electricity production, energy and exergy efficiencies, and exergy destruction rates are presented. The results of this investigation show that the proposed system is capable of producing hydrogen up to 70 L/h, chlorine up to 60 L/h, heat up to 800 W, electricity up to 160 W, with energy and exergy efficiencies up to 80% and 30%, respectively.  相似文献   

14.
This paper develops robust control and power management strategies for a 6 kW stationary proton exchange membrane fuel cell (PEMFC) hybrid power system. The system consists of two 3 kW PEMFC modules, a Li–Fe battery set, and electrical components to form a parallel hybrid power system that is designed to supply uninterruptible power to telecom base stations during power outages. The study comprises three parts: PEMFC control, power management, and system integration. First, we apply robust control to regulate the hydrogen flow rates of the PEMFC modules in order to improve system stability, performance, and efficiency. Second, we design a parallel power train that consists of two PEMFC modules and one Li–Fe battery set for the uninterruptible power supply (UPS) requirement. Lastly, we integrate the system for experimental verification. Based on the results, the proposed robust control and power management are deemed effective at improving the stability, performance, and efficiency of the stationary power system.  相似文献   

15.
The current study investigates a holistically developed solar energy system combined with a ground-sourced heat pump system for stand-alone usage to produce power, heat, and cooling along with domestic hot water for residential buildings. An integrated system is proposed where three types of building-integrated photovoltaic plant orientation are considered and integrated with a vertical-oriented ground-sourced heat pump system as well as an anion exchange membrane electrolyser for hydrogen-based energy storage along with proton exchange membrane fuel cells. The ground-sourced heat pump system covers the heating requirements and exploits the available thermal energy under the ground. Hydrogen subsystem enables the integrated system to be used anytime by compensating the peak periods with stored hydrogen via fuel cell and exploiting the excess energy to produce hydrogen via electrolyser. The photovoltaic plant orientations are extensively designed by considering geometries of three different applications, namely, rooftop photovoltaic, building-integrated photovoltaic façade and photovoltaic canopy. The shading and geometrical losses of photovoltaic applications are extensively identified and considered. In addition, the openly available high-rise building load profiles are obtained from the OpenEI network and are modified accordingly to utilize in the current study. The building requirements are considered for 8760 h annually with meteorological data and energy usage characteristics of the selected regions. The integrated system is assessed via thermodynamic-based approach from energy and exergy points of views. In order to increase generality, the proposed building energy system is analyzed for five different cities around the globe. The obtained results show that a 20-floor building with approximately 62,680 m2 residential area needs between 550 kWp and 1550 kWp of a photovoltaic plant in five different cities. For Ottawa, Canada, the overall energy and exergy efficiencies are found as 18.76% and 10.49%, respectively, in a typical meteorological year. For the city of Istanbul in Turkey, a 20-floor building is found to be self-sufficient by only using the building's surface area with a 495 kWp BIPV façade and a 90 kWp rooftop PV.  相似文献   

16.
Aiming at the power fluctuation and mismatch of the combined cooling, heating, and power (CCHP) system based on proton exchange membrane fuel cells (PEMFCs) and adsorption chiller, this study proposes a multi-stack coupled power supply strategy. The PEMFC stacks are divided into types Ⅰ, Ⅱ, and Ⅲ to meet the electric load and cooling load of the data center, and the heat requirements of the system. Meanwhile, economic analysis is conducted on the single-stack energy supply strategy and the multi-stack coupled energy supply strategy. The results show that with the multi-stack coupling power supply strategy, the cooling power and electric power almost completely match the load of the data center, without power fluctuations and overshoot. By smoothing the PID control results of the current of the stacks-Ⅲ, the heating power fluctuation is significantly reduced, and the maximum overshoot does not exceed 0.5 kW. Therefore, the strategy is conducive to the stable operation of the PEMFC stack and improves the lifetime of the system. Considering investment costs, maintenance costs, hydrogen costs, and electricity benefits, the multi-stack coupled energy supply strategy can save about 6.1 × 105 $ per year. In summary, the multi-stack coupled energy supply strategy has advantages in system lifetime, operational stability, and economy.  相似文献   

17.
In order to improve the comprehensive energy utilization rate of combined cooling, heating, and power (CCHP) system, a hybrid energy storage system (HESS) is proposed in this paper consisting of electric and thermal energy storage systems. And the overall optimization design and operation of CCHP system with HESS are the main problems to be solved in application. Therefore, the topology and the energy flow model of CCHP system with HESS are established and analyzed according to the energy conversion characteristics of the component equipment. Moreover, combined with five evaluative restrictions for HESS system, a rule-based energy management strategy is designed to realize the decoupling regulation of electric energy and thermal energy in CCHP system. On this basis, a multi-objective optimization model is studied by taking the indicators of annual cost ratio, the primary energy consumption ratio, and loss energy ratio, and then the capacity parameters are optimized by particle swarm optimization algorithm (PSOA). Finally, a case is carried out to compare the energy allocation situations and capacity optimization results between CCHP system with HESS and CCHP system with single thermal energy storage system (ST). Results show that the capacity of ICE is reduced by 34%, and the annual cost and the primary energy consumption are saved about 7.69% and 18.47%, respectively, demonstrating that HESS has better optimization effect and applicable for small-scale CCHP system.  相似文献   

18.
A novel hybrid plant for the production of a mixture of methane and hydrogen (17 vol%) from a steam-reforming reactor whose heat duty is supplied by a concentrating solar power (CSP) plant by means of a molten salt stream is here presented.  相似文献   

19.
Solar-assisted multi-generation systems are eco-friendly with exceptional thermal performance. In the present study, a novel solar-assisted multi-generational system is proposed and investigated for multiple outputs. The proposed system consists of solar tower with heliostat, combined cycle (topping is Brayton cycle, while bottoming is Rankine cycle with reheat and regeneration processes), single effect Lithium-Bromide/water absorption chiller, heat pump, water-based thermal energy storage system and an electrolyzer. The system is integrated with high temperature phase change material (PCM) based thermal storage system for the continuous system operation. The salt PCM KF-MgF2 is selected from the literature having melting temperature of 1280 K with high density and latent heat of fusion. The storage system ensures the stable and continuous working of the system during off sun hours. The aim of the present study is to thermodynamically and exergo-environmentally investigate the performance of PCM based solar driven multi-generation system.The results of the study depict that energy efficiency of single and multi-generation system is approximately 20.93% and 51.62%, while exergy efficiency is almost 22.51% and 53.45%, respectively. Hydrogen production rate and exergetic sustainability index of the proposed system is approximately 0.00742 kg/s and 0.078, respectively. Energy efficiency of multigeneration system is approximately 15.9% and 61% higher than tri-generation and co-generation systems at concentration ratio of 1000. Exergo-environmental impact index decreases to almost 5% by increasing direct normal irradiation, while exergetic sustainability index and exergy stability factor are increased to 125% and 54.2%, accordingly. Finally, energy efficiency of the single generation and multi generation systems are optimized at 23.56% and 56.83%, respectively.  相似文献   

20.
As a renewable source, solar energy plays an important role in meeting energy demand for human beings and in relieving global warming. In this paper, the concentrated solar heat is utilized to drive the high-endothermic methane reforming with carbon looping. In so doing, the process increases the utilization of CO2 and reduces the carbon emissions as well as saves the extra fuel consumption for combustion, leading to high efficiency of energy utilization. By optimizing this proposed system, the energy efficiency can reach approximate 67.13% with simultaneously reducing CO2 emissions by 34.98% compared with SMR process. Exergy analysis is used to assess the location of irreversibility within process. The maximal part of exergy destroyer was localized in reformer with a contribution of 68%. In addition, the effects of hourly variation of direct normal irradiation on thermodynamic performance and methane conversion on the four typical days (spring equinox, summer solstice, autumn equinox, winter solstice) were analyzed in this work. The current work might be insightful for solar-hydrogen production field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号