首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The transport sector is considered as one of the sectors producing high carbon emissions worldwide due to the use of fossil fuels. Hydrogen is a non-toxic energy carrier that could serve as a good alternative to fossil fuels. The use of hydrogen vehicles could help reduce carbon emissions thereby cutting down on greenhouse gases and environmental pollution. This could largely be achieved when hydrogen is produced from renewable energy sources and is easily accessible through a widespread network of hydrogen refuelling stations. In this study, the techno-economic assessment was performed for a wind-powered hydrogen refuelling station in seven cities of South Africa. The aim is to determine the optimum configuration of a hydrogen refuelling station powered by wind energy resources for each of the cities as well as to determine their economic viability and carbon emission reduction capability. The stations were designed to cater for 25 hydrogen vehicles every day, each with a 5 kg tank capacity. The results show that a wind-powered hydrogen refuelling station is viable in South Africa with the cost of hydrogen production ranging from 6.34 $/kg to 8.97 $/kg. These costs are competitive when compared to other costs of hydrogen production around the world. The cities located in the coastal region of South Africa are more promising for siting wind powered-hydrogen refuelling station compared to the cities located on the mainland. The hydrogen refuelling stations could reduce the CO2 and CO emissions by 73.95 tons and 0.133 tons per annum, respectively.  相似文献   

2.
We have modeled an approach for dispensing pressurized hydrogen to 350 and/or 700 bar vehicle vessels. Instead of relying on compressors, this concept stores liquid hydrogen in cryogenic pressure vessels where pressurization occurs through heat transfer, reducing the station energy footprint from 12 kW h/kgH2 of energy from the US grid mix to 1.5–2 kW h/kgH2 of heating. This thermal compression station presents capital cost and reliability advantages by avoiding the expense and maintenance of high-pressure hydrogen compressors, at the detriment of some evaporative losses. The total installed capital cost for a 475 kg/day thermal compression hydrogen refueling station is estimated at about $611,500, an almost 60% cost reduction over today's refueling station cost. The cost for 700 bar dispensing is $5.23/kg H2 for a conventional station vs. $5.45/kg H2 for a thermal compression station. If there is a demand for 350 bar H2 in addition to 700 bar dispensing, the cost of dispensing from a thermal compression station drops to $4.81/kg H2, which is similar to the cost of a conventional station that dispenses 350 bar H2 only. Thermal compression also offers capacity flexibility (wide range of pressure, temperature, and station demand) that makes it appealing for early market applications.  相似文献   

3.
Hydrogen has the potential to become a powerful energy vector with different applications in many sectors (industrial, residential, transportation and other applications) as it offers a clean, sustainable, and flexible alternative. Hydrogen trains use compressed hydrogen as fuel to generate electricity using a hybrid system (combining fuel cell and batteries) to power traction motors and auxiliaries. This hydrogen trains are fuelled with hydrogen at the central train depot, like diesel locomotives. The main goal of this paper is to perform a techno-economic analysis for a hydrogen refuelling stations using on-site production, based on PEM electrolyser technology in order to supply hydrogen to a 20 hydrogen-powered trains captive fleet. A sensitivity analysis on the main parameters will be performed as well, in order to acquire the knowledge required to take any decisions on implementation regarding electricity cost, hydrogen selling price, number of operation hours and number of trains for the captive fleet.The main methodology considers the evaluation of the project based on the Net Present Value calculation and the sensitivity analysis through standard method using Oracle Crystal Ball. The main result shows that the use of hydrogen as an alternative fuel for trains is a sustainable and profitable solution from the economic, environmental and safety points of view.The economic analysis concludes with the need to negotiate an electricity cost lower than 50 €/MWh, in order to be able to establish the hydrogen selling price at a rate higher than 4.5€/kg. The number of operating hours should be higher than 4800 h per year, and the electrolyser system capacity (or hydrogen refuelling station capacity) should be greater than 3.5 MW in order to reach a Net Present Value of 7,115,391 € with a Return of Investment set to 9 years. The result of the multiparametric sensitivity analysis for the Net Present Value (NPV) shows an 85.6% certainty that the project will have a positive result (i.e. profitability) (NPV> 0). The two main variables with the largest impact on Net Present Value are the electrolyser capacity (or hydrogen refuelling station capacity) and the hydrogen selling price. Moreover, a margin of improvement (higher NPV) could be reached with the monetization of the heat, oxygen by-product and CO2 emission reduction.  相似文献   

4.
Hydrogen fuelling station is an infrastructure for the commercialisation of hydrogen energy utilising fuel cells, particularly, in the automotive sector. Hydrogen fuel produced by renewable sources such as the solar and wind energy can be an alternative fuel to depress the use of fuels based on fossil sources in the transport sector for sustainable clean energy strategy in future. By replacing the primary fuel with hydrogen fuel produced using renewable sources in road transport sector, environmental benefits can be achieved. In the present study, techno-economic analysis of hydrogen refuelling station powered by wind-photovoltaics (PV) hybrid power system to be installed in ?zmir-Çe?me, Turkey is performed. This analysis is carried out to a design of hydrogen refuelling station which is refuelling 25 fuel cell electric vehicles on a daily basis using hybrid optimisation model for electric renewable (HOMER) software. In this study, National Aeronautics and Space Administration (NASA) surface meteorology and solar energy database were used. Therefore, the average wind speed during the year was assessed to be 5.72 m/s and the annual average solar irradiation was used to be 5.08 kW h/m2/day for the considered site. According to optimisation results obtained for the proposed configuration, the levelised cost of hydrogen production was found to be US $7.526–7.866/kg in different system configurations. These results show that hydrogen refuelling station powered by renewable energy is economically appropriate for the considered site. It is expected that this study is the pre-feasibility study and obtained results encougare the hydrogen refuelling station to be established in Turkey by inventors or public institutions.  相似文献   

5.
Nowadays, the development of hydrogen economy in the transportation sector is hindered by the principal barriers arising from the lack of adequate infrastructure and the small fleet of hydrogen-based road vehicles.This study investigates the potential of small-scale autonomous hydrogen refuelling stations with onsite production via an alkaline electrolysis apparatus powered by a small wind turbine. In this context, an urban area with promising wind resources has been selected. Based on the wind conditions and an indicative hydrogen demand for refuelling light-duty fuel cell electric vehicles such as bicycles, the sizing of the wind turbine and the electrolyser has been theoretically calculated. For supporting the daily hydrogen refuelling demand of the fuel cell electric bicycles, which is estimated at approximately 6 kg, it is calculated that a 50 kW wind turbine should be installed in order to power a 70 kW alkaline electrolyser for producing hydrogen. The capital cost of the hydrogen station is calculated at €248,130, while the retail price of the produced hydrogen is estimated to be more than 50.2 €/kgH2 in order to achieve a positive internal rate of return.Ultimately, the present paper aims at delivering a feasibility study of a small-scale H2 refuelling station for fuel cell bicycles in order to provide investors with initiatives to implement such schemes in urban environments where problems of low air quality and high traffic are intense.  相似文献   

6.
Fuel cell vehicles are a possible alternative for allowing a replacement of fossil-fuel based transportation. Thereby, this work's methodology proposes a Hydrogen Refueling Station (HRS) design powered by a photovoltaic plant for supplying the taxi fleet in a Brazilian city considering different scenarios and assuming that hydrogen-powered vehicles replace the current fleet. Results show that in order to supply 100% of the taxi fleet with hydrogen, 185.4 kgH2/day are necessary, while only 19.8 kgH2/day are enough to supply just 10% of it. Results also reveal slight variations in energy intensity. Hydrogen production costs are inversely proportional to the HRS's production capacity. Hydrogen costs about US$ 8.96/kg for larger HRSs and US$ 13.55/kg for smaller ones. Finally, the proposed system is an attractive alternative in the future nationwide, due to the fact that the cost of electricity has been escalating year after year above inflation rates.  相似文献   

7.
A housing insulation of hydrogen refuelling station is vital from the aspect of safe operation of equipment in an environment that is installed. To secure hydrogen supply during the whole year, this work brings the solution for both cooling and heating insulation equipment inside of hydrogen refuelling station installed in Croatia, Europe. This hydrogen refuelling station was designed as an autonomous photovoltaic-hydrogen system. In the interest of improving its energy efficiency, an optimal thermal management strategy was proposed. To select the best technological solution for thermal management design which will maintain optimal temperature range inside the housing in cold and warm months, a detailed analysis of the system components thermodynamic parameters was performed. Optimal operating temperatures were established to be 25 °C in summer and 16 °C in winter, considering components working specifications. Insulation, type of cooling units, and heaters have been selected according to the HRN EN 12831 and VDI 2078 standards, while the regime of the heating and cooling system has been selected based on the station's indoor air temperature. The annual required heating and cooling energy were calculated according to HRN EN ISO 13790 standard, amounting to 1135.55 kW h and 1219.55 kW h, respectively. Annual energy share obtained from solar power plant used for the heating and cooling system resulted in 5%. The calculated thermal management system load turned out to be 1.437 kW.  相似文献   

8.
The transition to low- or zero-emission vehicles in the transportation sector is a challenging task toward meeting the greenhouse gas emission targets set by the majority of countries. One way of achieving this goal is to utilise hydrogen gas via fuel cell electric vehicles. This paper investigates the operation, driving range and refuelling process of a fuel cell electric bicycle. The methodology applied includes an estimation of the bike's range under different routes and riders, the riders' opinions and a financial evaluation of the hydrogen fuel cost compared to other urban vehicle alternatives. The results showed a minimum median range-to-energy consumption ratio of 20.5 km/kWh, while the maximum hydrogen cost was found to reach 0.025 €/km when refuelling the hydrogen bicycle in an autonomous hydrogen station. The outcome of this study indicates that the introduction of light-duty hydrogen vehicles in urban transportation may adequately meet the average daily driving distance of city residents.  相似文献   

9.
Hydrogen refuelling stations are important for achieving sustainable hydrogen economy in low carbon transport and fuel cell electric vehicles. The solution presented in this paper provides us with a technology for producing carbon dioxide free hydrogen, which is an approach that goes beyond the existing large-scale hydrogen production technologies that use fossil fuel reforming. Hence, the main goal of this work was to design a hydrogen refuelling station to secure the autonomy of a hydrogen powered bicycle. The bicycle hydrogen system is equipped with a proton exchange membrane fuel cell stack of 300 W, a DC/DC converter, and a metal hydride storage tank of 350 NL of hydrogen. The hydrogen power system was made of readily available commercial components. The hydrogen station was designed as an off-grid system in which the installed proton exchange membrane electrolyzer is supplied with electric energy by direct conversion using photovoltaic cells. With the hydrogen flow rate of 2000 cc min−1 the hydrogen station is expected to supply at least 5 bicycles to be used in 20 km long city tourist routes.  相似文献   

10.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

11.
In view of the very expensive and wasteful nature of today's approaches to H2 delivery, we explore the possibility of transporting cold (200 K) high pressure (875 bar) H2 in thermally insulated trailers and dispensing H2 directly from the trailer, with the potential to eliminate station compressor, cascade, and refrigerator, leading to major reductions in station complexity, maintenance, electricity consumption, and cost, while improving functionality by enabling essentially unlimited back to back refuels, and improving safety due to reduced H2 expansion energy at low temperature.Detailed techno-economic analysis shows promise for substantial delivery cost reductions through cold high pressure H2 dispensed directly from the trailer. Results indicate that: (1) Terminal operations for cold high pressure H2 delivery are $0.32/kg H2 more expensive than for 350 bar compressed gas delivery (today's lowest cost H2 delivery technology) due to higher level of pressurization (to 1000 bar) and chilling needs (to 165 K). (2) Trailer cost drops slightly ($0.73 vs. $0.81/kg H2 for a 350 bar trailer) due to increased capacity (1035 kg H2 delivered vs. 700 kg) compensating for increased capital cost ($906,900 for cold high pressure H2 vs. $634,000 for 350 bar trailer). (3) Cold hydrogen delivery presents major advantages in fueling station cost, reduced from $1.27 to $0.46/kg H2 due to elimination of major system components: compressor, cascade, and chiller. (4) Total compression cost (terminal + station) drops from $0.92/kg H2 ($0.32 terminal and $0.60 station) for 350 bar trailers to $0.55/kg H2 (all at the terminal) for cold high pressure H2. (5) Elimination of small-scale station compressors is the main contributor to reduced delivery cost due to their inefficiency, capital expense, and maintenance needs. In summary, total delivery cost reduction vs. 350 bar trailer equals $0.58/kg H2 (from $2.96 to 2.38/kg H2), equivalent to 24% of the total delivery cost. This large cost advantage will improve the economics of H2 vehicles facilitating the transition to a future of zero emission transportation.  相似文献   

12.
Hydrogen is one of the energy carriers that can be produced using different techniques. Combining multiple energy sources can enhance hydrogen production and meet other electrical demands. The hybrid arrangement allows the produced hydrogen to be stored and used when the electrical energy sources are not adequate. In this study, utilizing the meteorological data was investigated using HOMER (Hybrid Optimization of Multiple Energy Resources) software for the optimal solution. The results demonstrated that the “best-optimized system has 270 kW of photovoltaic (PV), 1 unit of 300 kW of wind turbine (WT), 500 kW of electrolyzer, 100 kg/L of the hydrogen tank, 70 units of 1 kWh lithium-ion battery, and 472 kW of the converter. The selected hybrid energy system has the lowest Levelized cost of energy (LCOE), Levelized cost of hydrogen (LCOH), and net present cost (NPC) of $/kg 0.6208, $/kg 9.34, and $ 484,360.00 respectively which judged the system to be the best choice for the proposed hydrogen project in AI-Kharj. This investigation will help stakeholders and policymakers optimize hybrid energy systems that economically meet the hydrogen production and refueling station demands of the AI-Kharj community.  相似文献   

13.
The study aims to optimize the geothermal and solar-assisted sustainable energy and hydrogen production system by considering the genetic algorithm. The study will be useful by integrating hydrogen as an energy storage unit to bring sustainability to smart grid systems. Using the Artificial Neural Network (ANN) based Genetic Algorithm (GA) optimization technique in the study will ensure that the system is constantly studied in the most suitable under different climatic and operating conditions, including unit product cost and the plant's power output. The water temperature of the Afyon Geothermal Power Plant varies between 70 and 130 °C, and its mass flow rate varies between 70 and 150 kg/s. In addition, the solar radiation varies between 300 and 1000 W/m2 for different periods. The net power generated from the region's geothermal and solar energy-supported system is calculated as 2900 kW. If all of this produced power is used for hydrogen production in the electrolysis unit, 0.0185 kg/s hydrogen can be produced. The results indicated that the overall energy and exergy efficiencies of the integrated system are 4.97% and 16.0%, respectively. The cost of electricity generated in the combined geothermal and solar power plant is 0.027 $/kWh if the electricity is directly supplied to the grid and used. The optimized cost of hydrogen produced using the electricity produced in geothermal and solar power plants in the electrolysis unit is calculated as 1.576 $/kg H2. The optimized unit cost of electricity produced due to hydrogen in the fuel cell is calculated as 0.091 $/kWh.  相似文献   

14.
The present paper analyzes an innovative energy system based on a hydrogen station, as the core of a smart energy production center, where the produced hydrogen is then used in different hydrogen technologies adopted and installed nearby the station. A case study analysis has been proposed and then investigated, with a station capacity of up to 360 kg of hydrogen daily generated, located close to a University Campus. A hydrogen mobility network has been included, composed of a fuel cell hydrogen fleet of 41 vehicles, 43 bicycles, and 28 fuel cell forklifts. The innovative proposed energy system needs to meet also a power and heat demand for a student housing 5400 m2 building of the University Campus. The performance of the system is presented and investigated, including technical and economic analyses, proposing a hydrogen refueling station as an innovative alternative fuel infrastructure, called Multi-modular Hydrogen Energy Station, marking its great potential in future energy scenarios.  相似文献   

15.
In this study, biogas power production and green hydrogen potential as an energy carrier are evaluated from biomass. Integrating an Organic Rankine Cycle (ORC) to benefit from the waste exhaust gases is considered. The power obtained from the ORC is used to produce hydrogen by water electrolysis, eliminate the H2S generated during the biogas production process and store the excess electricity. Thermodynamic and thermoeconomic analyses and optimization of the designed Combined Heat and Power (CHP) system for this purpose have been performed. The proposed study contains originality about the sustainability and efficiency of renewable energy resources. System design and analysis are performed with Engineering Equation Solver (EES) and Aspen Plus software. According to the results of thermodynamic analysis, the energy and exergy efficiency of the existing power plant is 28.69% and 25.15%. The new integrated system's energy, exergy efficiencies, and power capacity are calculated as 41.55%, 36.42%, and 5792 kW. The total hydrogen production from the system is 0.12412 kg/s. According to the results of the thermoeconomic analysis, the unit cost of the electricity produced in the existing power plant is 0.04323 $/kWh. The cost of electricity and hydrogen produced in the new proposed system is determined as 0.03922 $/kWh and 0.181 $/kg H2, respectively.  相似文献   

16.
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today's cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/day dispensing capacity, is in the range of $6–$8/kg H2 when supplied with gaseous hydrogen, and $8–$9/kg H2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station's levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of $13–$15/kg H2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station's levelized cost can be reduced to $2/kg H2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.  相似文献   

17.
The number of hydrogen refuelling stations (HRSs) is steadily growing worldwide. In China, the first renewable hydrogen refuelling station has been built in Dalian for nearly 3 years. FLACS software based on computational fluid dynamics approach is used in this paper for simulation and analysis on the leakage and explosion of hydrogen storage system in this renewable hydrogen refuelling station. The effects of wind speed, leakage direction and wind direction on the consequences of the accident are analyzed. The harmful area, lethal area, the farthest harmful distance and the longest lethal distance in explosion accident of different accident scenarios are calculated. Harmful areas after explosion of different equipments in hydrogen storage system are compared. The results show that leakage accident of the 90 MPa hydrogen storage tank cause the greatest harm in hydrogen explosion. The farthest harmful distance caused by explosion is 35.7 m and the farthest lethal distance is 18.8 m in case of the same direction of wind and leakage. Moreover, it is recommended that the hydrogen tube trailer should not be parked in the hydrogen refuelling station when the amount of hydrogen is sufficient.  相似文献   

18.
In Norway, where nearly 100% of the power is hydroelectric, it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a startup market with low demand for hydrogen, one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilization rate. Two case studies addressing the levelized costs of hydrogen in local supply systems have been evaluated in the present work: (1) Hydrogen production at a small-scale hydroelectric power plant (with and without on-site refueling) and (2) Small hydrogen refueling station for trucks (with and without on-site hydrogen production). The techno-economic calculations of the two case studies show that the levelized hydrogen refueling cost at the small-scale hydroelectric power plant (with a local station) will be 141 NOK/kg, while a fleet of 5 fuel cell trucks will be able to refuel hydrogen at a cost of 58 NOK/kg at a station with on-site production or 71 NOK/kg at a station based on delivered hydrogen. The study shows that there is a relatively good business case for local water electrolysis and supply of hydrogen to captive fleets of trucks in Norway, particularly if the size of the fleet is sufficiently large to justify the installation of a relatively large water electrolyzer system (economies of scale). The ideal concept would be a large fleet of heavy-duty vehicles (with a high total hydrogen demand) and a refueling station with nearly 100% utilization of the installed hydrogen production capacity.  相似文献   

19.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

20.
A techno-economic analysis of a hydrogen valley is carried out in this paper. A hydrogen generator fed by a wind farm (WF) and/or a photovoltaic (PV) plant supplies four end-users: a stationary fuel cell, a hydrogen refuelling station, the injection in the natural gas pipeline and, in case of sufficient hydrogen surplus, a biological hydrogen methanation (BHM) process.The results demonstrated that an efficiency improvement and a reduction in hydrogen production costs arise from a balanced supply from wind and solar energy. Without the inclusion of a BHM process, hydrogen production costs lower than 7 €/kg were achieved by a hydrogen generator using 10–12% of the PV + WF annual energy with a PV share of 20%–50%. The hydrogen production costs were further reduced to 5 €/kg by introducing a BHM process and increasing the percentage of electrical energy supplied by the PV + WF system to 25% of its overall production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号