首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel catalyst-coated membrane (CCM) for solid polymer electrolyte water electrolysis was fabricated by together crystallizing partial-crystallized Nafion membrane and catalyst layers. The properties and performance of the partial-cocrystallized CCM (PCCCM) were evaluated and analyzed by destructive soaking test, scanning electron microscope, mercury intrusion and single cell test. The results revealed that the optimum annealing temperature and time for fabricating partial-crystallized Nafion membrane and PCCCM was 100 °C for 4 h and 120 °C for 4 h, respectively. The PCCCM not only possessed much stronger cohesion between membrane and catalyst layers, but also had higher porosity than conventional CCM. The electrolysis voltage of the SPE water electrolyser with the new CCM was as low as 1.748 V at 2000 mA cm−2 under 80 °C and atmospheric pressure. Moreover, there was no obvious increase of electrolysis voltage during stability test conducted under 2000 mA cm−2 for about 180 h.  相似文献   

2.
In this work, a catalyst sprayed membrane under irradiation (CSMUI) method was investigated to develop high performance membrane electrode assembly (MEA) for solid polymer electrolyte (SPE) water electrolysis. The water electrolysis performance and properties of the prepared MEA were evaluated and analyzed by polarization curves, electrochemistry impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The characterizations revealed that the CSMUI method is very effective for preparing high performance MEA for SPE water electrolysis: the cell voltage can be as low as 1.564 V at 1 A cm−2 and the terminal voltage is only 1.669 V at 2 A cm−2, which are among the best results yet reported for SPE water electrolysis with IrO2 catalyst. Also, it is found that the noble metal catalysts loadings of the MEA prepared by this method can be greatly decreased without significant performance degradation. At a current density of 1 A cm−2, the MEA showed good stability for water electrolysis operating: the cell voltage remained at 1.60 V without obvious deterioration after 105 h operation under atmosphere pressure and 80 °C.  相似文献   

3.
A test bench for a polymer electrolyte water electrolysis (PEWE) cell for high pressure operation of up to 100 bar in differential and balanced pressure mode is described. Important aspects referring to the design, safety and operability of the test bench and the design of a small scale electrolysis cell are described. The electrolyzer cell comprises a special compression mechanism which allows accommodating porous transport layers of different thickness and setting of the compression pressure independent of the clamping pressure. In order to analyze the electrochemical results with respect to the overpotentials, a power source with integrated high frequency resistance (HFR) as well as electrochemical impedance spectroscopy (EIS) measurement capabilities is implemented. The versatility of the test environment is demonstrated by comparing the DC, HFR and EIS data as a function of operating pressure, temperature (up to 70 °C) and current density (up to 4 A/cm2). With respect to pressurized operation of PEWE cells, only the differential pressure mode (hydrogen pressurized) shows the expected isothermal compression behavior, for balanced pressure operation a different characteristic is observed.  相似文献   

4.
5.
A two‐dimensional, multiphase, non‐isothermal numerical model was used to investigate the effect of the high performance catalyst layer (CL) design. Microstructure‐related parameters were studied on the basis of the agglomerate model assumption. A conventional CL design (uniform Pt/C composition, e.g., 40 wt%) was modified into two sub‐layers with two different Pt/C compositions (in this study, 40 and 80 wt%). The performance of sub‐layers with different CL designs is shown to be different. Simulation results show that substituting part of the Pt/C 40 wt% with Pt/C 80 wt% increases the cell performance. It was found that factors including proton conductivity, open circuit voltage, and sub‐layer thickness have a significant impact on overall cell performance. Different water distribution for different membrane electrode assembly designs was also observed in the simulation results. More liquid water accumulation inside the membrane electrode assembly is seen when the Pt/C 80 wt% sub‐layer is next to the gas diffusion layer. Finally, several key design parameters for the proposed high performance CL design including agglomerate radius, Nafion thin film thickness, and the Nafion volume fraction within the agglomerate in terms of CL fabrication were identified on the basis of our simulation results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
An ideal polymer electrolyte membrane fuel cell (PEMFC) is one that continuously generates electricity as long as hydrogen and oxygen (or air) are supplied to its anode and cathode, respectively. However, internal and/or external conditions could bring about the degradation of its electrodes, which are composed of nanoparticle catalysts. Particularly, when the hydrogen supply to the anode is disrupted, a reverse voltage is generated. This phenomenon, which seriously degrades the anode catalyst, is referred to as cell reversal. To prevent its occurrence, iridium oxide (IrO2) particles were added to the anode in the membrane-electrode assembly of the PEMFC single-cells. After 100 cell reversal cycles, the single-cell voltage profiles of the anode with Pt/C only and the anodes with Pt/C and various IrO2 contents were obtained. Additionally, the cell reversal-induced degradation phenomenon was also confirmed electrochemically and physically, and the use of anodes with various IrO2 contents was also discussed.  相似文献   

7.
Proton exchange membrane fuel cell (PEMFC) is considered to be a promising, clean, and efficient energy conversion device. At present, the main challenges faced by the application of PEMFC in the automotive are cost and durability. Hydrogen from anode to the cathode through polymer electrolyte membrane (i.e. crossover hydrogen) affects the durability of fuel cells. In this paper, the existing literature on hydrogen crossover is reviewed and summarized from consequences, causes, mitigation measures, and detection methods. The influences of hydrogen crossover on the components and performance are discussed. The causes are analyzed from structural permeation and membrane degradation. The methods of alleviating the degradation of the membrane are summarized. The electrochemical and non-electrochemical monitoring methods are described, and the segmented current method is explained separately. The existing problems and research prospects are put forward, which lays a foundation for further research on hydrogen crossover and improvement fuel cell durability.  相似文献   

8.
In this study, the correlation effect of catalyst loading (Lc) and ionomer content (Ciono) on the performance of polymer electrolyte membrane water electrolysis (PEMWE) is investigated. Sixteen membrane electrode assemblies are constructed and electrochemically evaluated using a cross-combination of two factors. Although the coupling of the two factors does not significantly affect the performance at a low working voltage, the effect is dominant at a high working voltage. Based on the establishment of correlations between the changes in the contributing factors (including the ionomer fraction, thickness, and porosity) caused by variations in the two factors, the effects on the kinetic, ohmic, and mass transfer overpotential are estimated and analyzed. Since the Ciono and Lc simultaneously affect the porosity, the required Ciono for achieving the best performance changes according to the Lc and vice versa. Additionally, a rapid drop in performance when the Ciono exceeds 25 wt% is due to the inhibited electron transfer in electrode and interface between the electrode and porous transport layers, and a critical ionomer concentration is proposed. Finally, high-performance PEMWE (6.882 A cm?2 at 2.05 V) is achieved with a low Lc of 0.5 mg cm?2 and a Ciono of 10 wt%.  相似文献   

9.
The effect of the cathode catalyst layer's structure and composition on the overall performance of a polymer electrolyte membrane fuel cell (PEMFC) is investigated numerically. The starting point of the sub-grid scale catalyst layer model is the well-known flooded agglomerate concept. The proposed model addresses the effects of ionomer (Nafion) loading, catalyst (platinum) loading, platinum/carbon ratio, agglomerate size and cathode layer thickness. The sub-grid scale model is first validated against experimental data and previously published results, and then embedded within a two-dimensional validated computational fluid dynamics code that can predict the overall performance of the fuel cell. The integrated model is then used to explore a wide range of the compositional and structural parameter space, mentioned earlier. In each case, the model is able to correctly predict the trends observed by past experimental studies. It is found that the performance trends are often different at intermediate versus high current densities—the former being governed by agglomerate-scale (or local) losses, while the latter is governed by catalyst layer thickness-scale (or global) losses. The presence of an optimal performance with varying Nafion content in the cathode is more due to the local agglomerate-scale mass transport and conductivity losses in the polymer coating around the agglomerates than due to the amount of Nafion within the agglomerate. It is also found that platinum mass loading needs to be at a moderate level in order to optimize fuel cell performance, even if cost is to be disregarded.  相似文献   

10.
The porous transport layer (PTL) in polymer electrolyte membrane water electrolysers (PEMWEs) has the multiple roles of delivering water to the electro-catalyst, removal of product gas, and acts as a conduit for electronic and thermal transport. They are, thus, a critical component for optimized performance, especially at high current density operation. This study examines the relationship between the microstructure and corresponding electrochemical performance of commonly used titanium sinter PTLs. Four PTLs, with mean pore diameter (MPD) ranging from 16 μm to 90 μm, were characterized ex-situ using scanning electron microscopy and X-ray computed micro-tomography to determine key structural properties. The performance of these PTLs was studied operando using polarization and electrochemical impedance spectroscopy. Results showed that an increase in mean pore size of the PTLs correlates to an increase in the spread and multimodality of the pore size distribution and a reduction in homogeneity of porosity distribution. Electrochemical measurements reveal a strong correlation of mean pore size of the PTLs with performance. Smaller pore PTLs showed lower Ohmic resistance but higher mass transport resistance at high current density of 3.0 A cm−2. A non-monotonic trend of mass transport resistance was observed for different PTLs, which suggests an optimal pore size beyond which the advantageous influence of macroporosity for mass transport is diminished. The results indicate that maximizing contact points between the PTL and the catalyst layer is the overriding factor in determining the overall performance. These results guide PTL design and fabrication of PEMWEs.  相似文献   

11.
12.
The catalyst layers are the most important part of the polymer electrolyte membrane (PEM) fuel cells, and the cell performance is highly related to its structure. The gas diffusion layers (GDLs) are also the essential components of the PEM fuel cell since the reactants should pass through these layers. Model prediction shows that electrical current in catalyst layer is non-uniform, influenced by the channel-land geometry. In addition, the compression effect of GDLs and water generation due to the electrochemical reaction may cause non-uniformity in porosity and, therefore, increases the non-uniformity in reactant concentration in GDL/catalyst layer interface. Simulation results suggest that non-uniform catalyst loading distribution in the catalyst layer will improve the performance of the whole catalyst layer by diminishing the variation in current density.  相似文献   

13.
The gas diffusion layer (GDL) is important for maintaining the performance of polymer electrolyte membrane (PEM) fuel cells, as its main function is to provide the cells with a path for fuel and water. In this study, the mechanical degradation process of the GDL was investigated using a leaching test to observe the effect of water dissolution. The amount of GDL degradation was measured using various methods, such as static contact angle measurements and scanning electron microscopy. After 2000 h of testing, the GDL showed structural damage and a loss of hydrophobicity. The carbon-paper-type GDL showed weaker characteristics than the carbon-felt-type GDL after dissolution because of the structural differences, and the fuel cell performance of the leached GDL showed a greater voltage drop than that of the fresh GDL. Contrary to what is generally believed, the hydrophobicity loss of GDL was not caused by the decomposition of polytetrafluoroethylene (PTFE).  相似文献   

14.
The durability of membrane electrode assemblies (MEAs) with varying amounts of Pt loading on the cathode of polymer electrolyte membrane fuel cells was investigated using load cycling as an accelerated degradation test (ADT). The single-cell performance of the MEA as determined by the ADT declined by approximately 34, 48, and 78%, when cathode Pt loading in the MEA was reduced to 0.3, 0.2, and 0.1 mg cm−2, respectively. The increase in MEA performance declined at higher cathode Pt loading conditions, and the degradation rate of MEA performance was also diminished. To characterize the electrochemical and structural properties of the MEAs, cyclic voltammograms, electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy were utilized before and after ADT.  相似文献   

15.
The performance of polymer electrolyte membrane fuel cells fabricated with different catalyst loadings (20, 40 and 60 wt.% on a carbon support) was examined. The membrane electrode assembly (MEA) of the catalyst coated membrane (CCM) type was fabricated without a hot-pressing process using a spray coating method with a Pt loading of 0.2 mg cm−2. The surface was examined using scanning electron microscopy. The catalysts with different loadings were characterized by X-ray diffraction and cyclic voltammetry. The single cell performance with the fabricated MEAs was evaluated and electrochemical impedance spectroscopy was used to characterize the fuel cell. The best performance of 742 mA cm−2 at a cell voltage of 0.6 V was obtained using 40 wt.% Pt/C in both the anode and cathode.  相似文献   

16.
This paper investigated numerically the effect of cathode channel shapes on the local transport characteristics and cell performance by using a three-dimensional, two-phase, and non-isothermal polymer electrolyte membrane (PEM) fuel cell model. The cells with triangle, trapezoid, and semicircle channels were examined using that with rectangular channel as comparison basis. At high operating voltages, the cells with various channel shapes would have similar performance. However, at low operating voltages, the fuel cell performance would follow: triangle > semicircle > trapezoid > rectangular channel. Analyses of the local transport phenomena in the cell indicate that triangle, trapezoid, and semicircle channel designs increase remarkably flow velocity of reactant, enhancing liquid water removal and oxygen utilization. Thus, these designs increase the limiting current density and improve the cell performance relative to rectangular channel design.  相似文献   

17.
This paper describes a numerical and experimental analysis of the optimum loadings of noble metals (Pt, Ir) in electrocatalytic layers of the polymer electrolyte membrane (PEM) water electrolysis cells. Based on the obtained results, the Pt loading of ca. 0.4 mg/cm2 (or 1 mg/cm2 of Pt/C with 40 wt. % of Pt) and ca. 2.5 mg/cm2 of IrO2 loading could be recommended. The developed mathematical model has shown that these optimum values are derived from the interference of activation and ohmic losses in the electrocatalytic layers. The membrane-electrode assembly (MEA) with these noble metal contents does not exhibit significant catalytic layer degradation within 4000 h of operation.  相似文献   

18.
Operating parameters, material properties and flow field geometry have a deterministic role on the water storage and distribution within the flow channels and porous media in a fuel cell. However, their effects are not yet precisely understood. In this study, extensive neutron imaging experiments were conducted to visualize and quantify the amount of liquid water in the fuel cell channels and diffusion media as a function of inlet gas flow rate, cell pressure and inlet relative humidity. A seven-channel parallel flow configuration PEFC was used to isolate these parameters from flow field switchback interaction effects.

The neutron imaging experiments were performed at different inlet gas flow rates, operating cell pressures and inlet relative humidities. At each operating condition, the distribution of liquid water in the diffusion media under the lands, and in or under the channels was obtained. Furthermore, at three different cell pressures (0.2 MPa, 0.15 MPa and 0.1 MPa), liquid water distribution and quantification was obtained. The liquid water mass in the cell decreased with increasing pressure for over-humidified anode inlet conditions. Comparison of the fuel cell performance with the total liquid water mass in the cell indicates a non-monotonic relationship between liquid water content and performance. Furthermore, cell performance was highly sensitive to incremental changes in the membrane liquid water content.  相似文献   


19.
Electrospun membranes of polyacrylonitrile are prepared, and the electrospinning parameters are optimized to get fibrous membranes with uniform bead-free morphology. The polymer solution of 16 wt.% in N,N-dimethylformamide at an applied voltage of 20 kV results in the nanofibrous membrane with average fiber diameter of 350 nm and narrow fiber diameter distribution. Gel polymer electrolytes are prepared by activating the nonwoven membranes with different liquid electrolytes. The nanometer level fiber diameter and fully interconnected pore structure of the host polymer membranes facilitate easy penetration of the liquid electrolyte. The gel polymer electrolytes show high electrolyte uptake (>390%) and high ionic conductivity (>2 × 10−3 S cm−1). The cell fabricated with the gel polymer electrolytes shows good interfacial stability and oxidation stability >4.7 V. Prototype coin cells with gel polymer electrolytes based on a membrane activated with 1 M LiPF6 in ethylene carbonate/dimethyl carbonate or propylene carbonate are evaluated for discharge capacity and cycle property in Li/LiFePO4 cells at room temperature. The cells show remarkably good cycle performance with high initial discharge properties and low capacity fade under continuous cycling.  相似文献   

20.
Flow field design on the cathode side, inspired by leaf shapes, leads to a high performance, as it achieves a good distribution of reactants. Furthermore, the addition of baffles to the cathode channel also increases the supply of reactants in the cathode catalyst. However, research on the addition of baffles to the cathode channel has still been limited to straight channels and conventional flow fields. Therefore, in this work, a numerical study was conducted to investigate the effect of baffles on the leaf flow field on the performance of a polymer electrolyte membrane fuel cell. The generated 3D model is composed of nine layers with a 25-cm2 active area. The beam and chevron shapes of the baffles, which were inserted into the mother channel, were compared. The simulation results revealed that the addition of beam-shaped baffles that are close to each other can increase the current and power densities by up to 18% due to the more uniform distribution of the oxygen mass fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号