首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wind power potential by itself is not a good indicator of the suitability of a region for wind power generation for different purposes. Economic attractiveness is a better indicator in this regard as it stimulates the involvement of private businesses in this sector. Naturally, the shorter is the payback period or the time required to reach profitability, the more attractive will be the project. Considering the high wind energy potential of some regions of Iran, this study evaluates the wind energy available for generating electricity as well as hydrogen by industrial and agricultural sectors in four cities of Ardebil province, namely Ardebil, Khalkhal, Namin, and Meshkinshahr, and then conducts an econometric analysis accordingly. Wind power potentials are evaluated using the energy pattern factor and Weibull distribution function based on 5-year meteorological data of the studied regions. Economic evaluations are performed based on the present worth of incomes and costs, which are estimated for two models of wind turbines with 3.5 and 100 KW rated power. Results indicate that the cities of Namin and Ardebil with wind power densities of respectively 261.68 and 258.99 W/m2 have the best condition. The economic analysis conducted for turbines shows that for Ardebil, installation of the 3.5 KW and 100 KW turbines will have a payback period of 13 and 5 years, respectively. For Khalkhal, Namin, and Meshkinshahr, the only feasible option is installation of the 100 KW turbine, which would result in a payback period of respectively 10.2, 6.1 and 8.7 years. Then it is investigated how much hydrogen can be gained if these private sectors invest in producing hydrogen using nominated wind turbines.  相似文献   

2.
In this paper, we propose an integrated system, consisting of a heliostat field, a steam cycle, an organic Rankine cycle (ORC) and an electrolyzer for hydrogen production. Some parameters, such as the heliostat field area and the solar flux are varied to investigate their effect on the power output, the rate of hydrogen produced, and energy and exergy efficiencies of the individual systems and the overall system. An optimization study using direct search method is also carried out to obtain the highest energy and exergy efficiencies and rate of hydrogen produced by choosing several independent variables. The results show that the power and rate of hydrogen produced increase with increase in the heliostat field area and the solar flux. The rate of hydrogen produced increases from 0.006 kg/s to 0.063 kg/s with increase in the heliostat field area from 8000 m2 to 50,000 m2. Moreover, when the solar flux is increased from 400 W/m2 to 1200 W/m2, the rate of hydrogen produced increases from 0.005 kg/s to 0.018 kg/s. The optimization study yields maximum energy and exergy efficiencies and the rate of hydrogen produced of 18.74%, 39.55% and 1571 L/s, respectively.  相似文献   

3.
Anodic fuel recirculation system has a significant role on the parasitic power of proton exchange membrane fuel cell (PEMFC). In this paper, different fuel supply systems for a PEMFC including a mechanical compressor, an ejector and an electrochemical pump are evaluated. Furthermore, the performances of ejector and electrochemical pump are studied at different operating conditions including operating temperature of 333 K–353 K, operating pressure of 2 bar–4 bar, relative humidity of 20%–100%, stack cells number from 150 to 400 and PEMFC active area of 0.03 m2–0.1 m2. The results reveal that higher temperature of PEMFC leads to lower power consumption of the electrochemical pump, because activation over-potential of electrochemical pump decreases at higher temperatures. Moreover, higher operating temperature and pressure of PEMFC leads to higher stoichiometric ratio and hydrogen recirculation ratio because the motive flow energy in ejector enhances. In addition, the recirculation ratio and hydrogen stoichiometric ratio increase, almost linearly, with increase of anodic relative humidity. Utilization of mechanical compressor leads to lower system efficiency than other fuel recirculating devices due to more power consumption. Utilization of electrochemical pump in anodic recirculation system is a promising alternative to ejector due to lower noise level, better controllability and wide range of operating conditions.  相似文献   

4.
The hydrogen dispersion phenomenon in an enclosure depends on the ratio of the gas buoyancy-induced momentum and diffusive motions. Random diffusive motions of individual gas particles become dominative when the release momentum is low, and a uniform hydrogen concentration appears in the enclosure instead of the gas cumulation below the ceiling. The expected hydrogen behavior could be projected by the Froude number, which value ~1 predicts a decline of buoyancy. This paper justifies this hypothesis by demonstrating full-scale experimental results of hydrogen dispersion within a confined space under six different release variations. During the experiments, hydrogen was released into the test room of 60 m3 volume in two methods: through a nozzle and through 21 points evenly distributed on the emission box cover (multi-point release). Each release method was tested with three volume flow rates (3.2 × 10−3 m3/s, 1.6 × 10−3 m3/s, 3.3 × 10−4 m3/s). The tests confirm the decrease of hydrogen buoyancy and its stratification tendencies when the Mach, Reynolds, and Froud number values decrease. Because the hydrogen dispersion phenomenon would impact fire and explosive hazards, the presented experimental results could help fire protection systems be in an enclosure designed, allowing their effectiveness optimization.  相似文献   

5.
Currently, the hydrogen storage method used aboard fuel cell electric vehicles utilizes pressures up to 70 MPa. Attaining such high pressures requires mechanical gas compression or hydrogen liquefaction followed by heating to form a high-pressure gas, and these processes add to the cost and reduce the energy efficiency of a hydrogen fueling system. In previous work we have evaluated the use of high-pressure electrolysis, in which hydrogen is generated from water and the electrolyzer boosts the hydrogen pressure to values from 13 to 45 MPa. While electrolytic compression is a novel and energy efficient method to produce high-pressure hydrogen, it has several limitations at present and will require more development work. Another concept is to use hydrogen absorbing alloys that form metal hydrides, in combination with a heat engine (hot and cold reservoirs), to drive a cyclic process in which hydrogen gas is absorbed and desorbed to compress hydrogen. Furthermore, by using a thermally-driven compressor, the hot and cold reservoirs can be obtained using renewable energy such as sunlight for heating together with ambient air or water for cooling. In this work we evaluated the thermodynamics and kinetics of a prototype metal hydride hydrogen compressor (MHHC) built for us by a research group in China. The compressor utilized a hydrogen input pressure of approximately 14 MPa, and, operating between an initial temperature of approximately 300 K and a final temperature of 400 K, a pressure of approximately 41 MPa was attained. In a series of experiments with those conditions the average compression ratio for a single-stage compression was approximately three. In the initial compression cycles, up to 300 g of hydrogen was compressed for each 100 K temperature cycle. The enthalpy of the metallic-alloy-hydriding reaction was found to be approximately 20.5 kJ per mole of H2, determined by measuring the pressure composition isotherm at three temperatures and using a Van't Hoff plot. The thermodynamic efficiency of the compressor, as measured by the value of the compression work performed divided by the heat energy added and removed in one complete cycle, was determined via first and second law analyses. The Carnot efficiency was approximately 25%, the first law efficiency was approximately 3–5%, and the second law efficiency was approximately 12–20%, depending on the idealized compression cycle used to assign a value to the compression work, as well as other assumptions. These efficiencies compare favorably with values reported for other thermally-driven compressors.  相似文献   

6.
It is known that the reaction from methanol to hydrogen has a positive Gibbs free energy and therefore cannot occur spontaneously. In the present work, by utilizing the chemical energy of neutralization, a new electrochemical technology was developed to produce hydrogen and electricity from methanol solution simultaneously, without needing external energy input. In our designed electrochemical cell, hydrogen can be produced on cathode while methanol can be oxidized on anode with additional electricity production. The effect of anode surface area on hydrogen production rate and power output was also investigated. With anode apparent surface area of 6.15 cm2, initial hydrogen production rate can reach up to 1.07 m3 H2 m−3 d−1 and the maximum power density output of 1.26 W m−2 can be achieved, at the same time. Although it is only a preliminary work, our work is supposed to provide a new approach for the on-board hydrogen production for the application of various fuel cell technologies, which is urgently needed nowadays.  相似文献   

7.
To save compressor investment and promote operation efficiency of hydrogen refueling station, the hydrogen storage alloys for high-pressure hydrogen metal hydride tank is developed. Ti1.02Cr2-x-yFexMny (0.6 ≤ x ≤ 0.75, y = 0.25, 0.3) alloys with main structure of C14 type Laves phase and low dehydrogenation enthalpy were prepared by plasma arc melting and heat treatment. Pressure-composition-temperature measurements show that hydrogen desorption plateau pressures increase with Cr substituted by Fe increasing. The maximum and reversible hydrogen storage capacities are more than 1.85 and 1.65 wt% at 201 K respectively. The hydrogen desorption plateau slopes are all less than 0.5. The symmetry weakening of 2a sites may deteriorate the plateau slop characteristic. Ti1.02Cr0.95Fe0.75Mn0.3 and Ti1.02Cr1.0Fe0.75Mn0.25 alloys are suitable for high pressure hybrid tank which can supply the effective hydrogen (more than 70 MPa) about 40.0, 44.2, 46.9 kg/m3 with 45, 70, 90 MPa compressor, respectively.  相似文献   

8.
In this article, the solar hydrogen storage is modeled and hourly investigated with TRNSYS software. The Photovoltaic (PV) panel is employed for green power generation that is consumed in the electrolyzer subsystem and produced hydrogen. Additionally, the required electricity at the lack of enough solar irradiation is supplied from the grid. The performance of the system is comparatively analyzed for three main cities. Results show that the maximum power generation by PV panel is about 1670 kW in June which approximately is the same for two cities. The energy and Faraday efficiency of electrolyzer changes between 0.85-0.89 and 0.89–0.92 respectively. The amount of hydrogen production reaches 1235 m3/h for one of them in May. The total amount of hydrogen production is 13,181 m3/year in Yazd, 13,143 m3/year in hot city, and 13,141 m3/year in most populated city.  相似文献   

9.
In a novel bio-electrochemical system (BES) for hydrogen and electricity co-production with acetate substrate, the anolyte pH and cathode Pt loading effects are investigated to improve the cell performance for hydrogen and electricity co-production and reduce the cost. The optimized anolyte pH is 9. The maximum hydrogen production rate of 0.55 m3 m−3 d−1 and COD removal of 76% are obtained under optimal anolyte pH in the present BES. Over high or over low anolyte pH decreases the hydrogen production rate and COD removal. In addition, the experiments show that there is no considerable difference for the power density output and steady state current when the Pt catalyst loading is above 0.1 mg cm−2. But when the Pt catalyst loading is lower than 0.1 mg cm−2, the power density output and current decreases significantly. About 1.7 W m−3 power density output can be obtained by using 0.1 mg cm−2 Pt catalyst in the present research.  相似文献   

10.
Waste heat from anaerobic digesters can be converted to electricity by using thermoelectric generators (TEG). Herein, such energy was employed to power a microbial electrolysis cell (MEC) for producing hydrogen gas. Four TEG units could deliver a voltage of ~0.5 V, sufficient to drive the MEC that achieved a hydrogen production rate of 0.48 ± 0.13 m3 m−3 d−1. This rate was further improved to 0.75 ± 0.05 m3 m−3 d−1 when the temperature difference for TEG was increased from 18 to 28 °C. There was no significant difference between the TEG-powered MEC and power supply-supported MEC (at 0.6 V), in terms of current generation, hydrogen production, and organic removal. Ambient air was also studied as a cold-side source for TEG, although some challenges were encountered to maintain a large temperature difference. Those results will encourage further exploration of using TEG as a feasible power supply for sustainable MEC operation.  相似文献   

11.
In this study, hydrogen production and storage were investigated. The Transient System Simulation Program (TRNSYS) and Generic Optimization Program (GenOpt) packages were combined for the design and optimization of a system that produces hydrogen from water and stores the hydrogen it produced in the compressed gas tank. The system design is based on the electricity grid. Electrical energy produced in photovoltaic (PV) panels was used to electrolyze water. The systems for Izmir, Istanbul and Ankara provinces which are in different climate zones of Turkey were optimized and the annual system performances based on the optimum angles were analyzed. For the mentioned provinces, the PV tilt angles which minimize electricity drawn from the grid at the electrolyzer are also investigated. The electrical energy produced in the photovoltaic panels, the hydrogen and oxygen amounts produced, the efficiency of the electrolyzer, the gas and pressure levels in the hydrogen tank were compared. According to the results of the analysis, the annual total power produced in photovoltaic panels is 42803.66 kW in İzmir, 42573.74 kW in Istanbul and 44613.95 kW in Ankara. Hydrogen levels produced in the system are calculated as 10488.39 m3 year−1 in Izmir, 9824.70 m3 year−1 in Istanbul, and 10368.65 m3 year−1 in Ankara.  相似文献   

12.
This paper presents a control solution based on dynamic disturbance decoupling control (DDC) for a centrifugal compression system, which is used to supply the compressed air to the fuel cell, thereby reacting with the hydrogen to produce electricity. As a result of its ultra-high speed, this compressor has a great advantage of ultra-compactness, which makes it more suitable for transportation applications. However, unlike positive displacement compressors, the centrifugal compressor has strong coupling between mass flow and pressure, which gives rise to the difficulty of control and also limits its operating region. In this paper, a unique dynamic DDC strategy, based on the active disturbance rejection control (ADRC) framework, is developed to control the mass flow and pressure simultaneously. The experimental results show that, compared with a traditional PI controller this controller performs better in both the transient and steady states. This control system has been validated on a 10 kW fuel cell model under load variations.  相似文献   

13.
The feasibility of operational strategies was investigated for hydrogen and methane production from food waste. Food waste was heat-treated at 70 °C and fed to a two-phase anaerobic sequencing batch fermenting system. Maximum hydrogen productivity of 1.19 m3 H2/m3 d was observed at a food waste concentration of 30 g carbohydrate/L, a hydraulic retention time of 2 d, and a solids retention time of 3.4 d. The effluent from hydrogenesis was efficiently converted to methane at an organic loading rate of up to 3.6 kg COD/m3.d. The methanogenic effluent was then recycled to the hydrogenesis reactor without any pretreatment. The recycled effluent not only successfully replaced external dilution water and decreased alkaline dosage by 75%, but also increased hydrogen production by 48%, resulting in hydrogen productivity of 1.76 m3/m3 d. The two-phase digestion with recycling would convert 91% of organic pollutants in food waste to hydrogen (8%) and methane (83%) without any external dilution water.  相似文献   

14.
In this paper catalyst temperature and hydrogen flow rate controls are an area of interest for autothermal reforming (ATR) of diesel fuel to provide continuous and necessary hydrogen flow to the on-board fuel cell vehicle system. ATR control system design is important to ensure proper and stable performance of fuel processor and fuel cell stack. Fast system response is required for varying load changes in the on-board fuel cell system. To cope with control objectives, a combination of PI and PID controllers are proposed to keep the controlled variables on their setpoints. ATR catalyst temperature is controlled with feedback PID controller through variable OCR (oxygen to carbon ratio) manipulation and kept to the setpoint value of 900 °C. Additionally diesel auto-ignition delay time is implemented through fuel flow rate delay to avoid complete oxidation of fuel. Hydrogen flow rate to the fuel cell stack is kept to setpoint of required hydrogen flow rate according to fuel cell load current using PI controller. An integrated dynamic model of fuel processor and fuel cell stack is also developed to check the fuel cell voltage. Product gas composition of 35, 18 and 4% is achieved for hydrogen, nitrogen, and carbon dioxide, respectively. The results show fast response capabilities of fuel processor following the fuel cell load change and successfully fulfills the control objectives.  相似文献   

15.
Renewable and carbon free energy relates to the sustainable development of human beings while hydrogen production by renewables and hydrogen underground storage ensure the stable and economic renewable energy supply. A hybrid energy system combining hydrogen production by offshore wind power with hydrogen storage in depleted oil reservoirs was constructed along with a mathematical model where the Weibull distribution, Wind turbine power function, Faraday's law, continuity equation, Darcy's law, state equation of real gas, Net Present Value (NPV) and the concept of leveling were adopted to clarify the system characteristics. For the case of a depleted oil field in the Bohai Bay, China, the annual hydrogen production, annual levelized cost of hydrogen and payback period are 2.62 × 106 m³, CNY 34.6/kgH2 and 7 years, respectively. Sensitivity analysis found that the wind speed impacted significantly on system NPV and LCOH, followed by hydrogen price and stratum pressure.  相似文献   

16.
The effect of the operating voltage on the performance of a microbial electrolysis cell (MEC) equipped with both a bioanode and a biocathode for hydrogen production is reported. Chronoamperometry tests ranged between 0.3 and 2.0 V were carried out after both bioelectrodes were developed. A maximum current density up to 1.6 A m−2 was recorded at 1.0 V with hydrogen production rate of nearly 6.0 ± 1.5 L m−2 cathode day−1. Trace amounts of methane, acetone and formate were detected in cathode's headspace and catholyte which followed the same trend as hydrogen production rate. Meanwhile substrate consumption in anolyte also followed the trend of hydrogen production and current density changes. The bioanode could utilise up to 95% of acetate in the tested voltage ranges, however, at a cell voltage of 2.0 V the bioanode's activity stopped due to oxygen evolution from water hydrolysis. Cyclic voltammograms revealed that the bioanode activity was vital to maintain the functionality of the whole system. The biocathode relied on the bioanode to maintain its potential during the hydrogen evolution. The overall energy efficiency recovered from both bioanode and external power in terms of hydrogen production at the cathode was determined as 29.4 ± 9.0%, within which substrate oxidation contributed up to nearly 1/3 of the total energy marking the importance of bioanode recovering energy from wastewater to reduce the external power supply.  相似文献   

17.
We elucidate the hydrogen diffusivity in martensite matrix with retained austenite (RA). Two aspects are focused: effect of microstructure on hydrogen diffusion behavior; hydrogen diffusivity calculation for different microstructural components. Quenched martensite (QM) had the highest effective hydrogen diffusion coefficient because of high dislocation density. Effective hydrogen diffusion coefficient decreased with the increase of intercritical annealing temperature because of decrease in dislocation density and increase of RA. According to the principle of Maxwell-Garnett equation, the hydrogen diffusion coefficient for grain boundary (GB) was 7.99 × 10?8 m2/s and hydrogen diffusion coefficient of tempered martensite (TM) was 7.84 × 10?11 m2/s.  相似文献   

18.
Ongoing and emerging renewable energy technologies mainly produce electric energy and intermittent power. As the energy economy relies on banking energy, there is a rising need for chemically stored energy. We propose heat driven reverse electrodialysis (RED) technology with ammonium bicarbonate (AmB) as salt for producing hydrogen. The study provides the authors’ perspective on the commercial feasibility of AmB RED for low grade waste heat (333 K–413 K) to electricity conversion system. This is to our best of knowledge the only existing study to evaluate levelized cost of energy of a RED system for hydrogen production. The economic assessment includes a parametric study, and a scenario analysis of AmB RED system for hydrogen production. The impact of various parameters including membrane cost, membrane lifetime, cost of heating, inter-membrane distance and residence time are studied. The results from the economic study suggests, RED system with membrane cost less than 2.86 €/m2, membrane life more than 7 years and a production rate of 1.19 mol/m2/h or more are necessary for RED to be economically competitive with the current renewable technologies for hydrogen production. Further, salt solubility, residence time and inter-membrane distance were found to have impact on levelized cost of hydrogen, LCH. In the present state, use of ammonium bicarbonate in RED system for hydrogen production is uneconomical. This may be attributed to high membrane cost, low (0.72 mol/m2/h) hydrogen production rate and large (1,281,436 m2) membrane area requirements. There are three scenarios presented the present scenario, market scenario and future scenario. From the scenario analysis, it is clear that membrane cost and membrane life in present scenario controls the levelized cost of hydrogen. In market scenario and future scenario the hydrogen production rate (which depends on membrane properties, inter-membrane distance etc.), the cost of regeneration system and the cost of heating controls the levelized cost of hydrogen. For a thermally driven RED system to be economically feasible, the membrane cost not more than 20 €/m2; hydrogen production rate of 3.7 mol/m2/h or higher and cost of heating not more than 0.03 €/kWh for low grade waste heat to hydrogen production.  相似文献   

19.
Herein, the first observation of the effective hydrogen diffusion coefficient of CoCrFeMnNi high-entropy alloy (HEA) was performed using electrochemical hydrogen permeation; further, it was compared with those of stainless steels (SS) 304 and 316L. HEA and SS 316L showed similar effective hydrogen diffusion coefficient of 1.75 × 10−11 m2/s and 1.91 × 10−11 m2/s, respectively. SS 304 showed the smallest that of 0.58 × 10−11 m2/s in the study. Hydrogen diffusion through the grain boundary was dominant in face-centered cubic metals. Hydrogen permeation resulted in no change in the microstructure of HEA and SS 316L; however, it caused a martensitic transformation in SS 304.  相似文献   

20.
Two-stage hydrogen and methane production in extreme thermophilic (70 °C) conditions was demonstrated for the first time in UASB-reactor system. Inoculum used in hydrogen and methane reactors was granular sludge from mesophilic internal circulation reactor and was first acclimated for extreme thermophilic conditions. In hydrogen reactor, operated with hydraulic retention time (HRT) of 5 h and organic loading rate (OLR) of 25.1 kg COD/m3/d, hydrogen yield was 0.73 mol/mol glucoseadded. Methane was produced in second stage from hydrogen reactor effluent. In methane reactor operated with HRT of 13 h and OLR of 7.8 kg COD/m3/d, methane yield was 117.5 ml/g CODadded. These results prove that hydrogen and methane can be produced in extreme thermophilic temperatures, but as batch experiments confirmed, for methane production lower temperature would be more efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号