首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New bi-functional materials comprising the reforming catalyst, cobalt, and the CO2-sorbent, hydrotalcite were used to produce pure hydrogen (H2) from sorption-enhanced steam glycerol reforming (SESGR). Three promoters, calcium, copper and zinc, were used for modifying the properties of hydrotalcites. All materials were characterized using X-ray diffraction, nitrogen physisorption and electron microscopy techniques. They were found to be very proficient for glycerol-to-H2 conversion in a fixed-bed reactor, even at low temperature (623–823 K). Copper-promoted materials were especially promising, due to longest duration of the pre-breakthrough stage (40 min) and highest H2 content of the reformed gas (93.1%) at T = 823 K. Besides, their sorption capacity was the highest (1.1 mol CO2/kg sorbent) at T = 823 K. The effects of temperature, steam-to-carbon ratio in feed (S/C ratio) and gas hourly space velocity (GHSV) on the SESGR process were investigated. Durability tests over 20 cycles of adsorption and regeneration showed that materials promoted with calcium, copper and zinc were stable up to 8 (at 773 K), 11 and 5 cycles (at 823 K) correspondingly. The role of cobalt metal and cationic hydrotalcite promoters in the reforming pathway was elucidated. This insightful study will assist in improved H2 production from renewably producible glycerol.  相似文献   

2.
The transient chemical reaction phenomena of the sorption-enhanced steam methane reforming (SE-SMR) by using Ni/Al2O3 catalyst and CaO sorbent in a tubular fixed-bed reactor were numerically investigated by an experimentally verified unsteady 2D model. Four chemical reactions are involved in SE-SMR including steam reforming (SR), water gas shift (WGS), global steam reforming (GSR), and CO2 sorption. The reaction process in time is divided into period 1, transient period, and period 2. The high-purity H2 is produced in period 1 which is defined as the outlet molar fractions of H2 ≥ 90% and CO ≤ 1% (dry basis) in this work. In the first half of period 1, the endothermic reaction rates of SR and GSR are dominant in the entrance region of catalyst/sorbent bed. The WGS and CO2 sorption reactions are triggered by SR and GSR reactions. The heat transfer from the wall plays an important role. Higher CaO conversion, temperature, and reaction rates appear first near the wall region, then they gradually expand to the central region.In the second half of period 1, a sharp wave-shaped curve of strong CO2 sorption reaction occurred in downstream becomes dominant and it moves to downstream almost at a constant speed, as time progresses. The peak value of the CO2 sorption reaction is more than twice larger than that of SR or WGS. The SR and WGS reaction rates are significantly enhanced by CO2 sorption reaction. The great sorption, WGS, and SR reactions result in a high-purity H2 production with the outlet molar fractions of 95.8% H2, 0.998% CO, and 0.73% CO2 at the end of period 1, based on the parameters used in this work such as reactor temperature of 600 °C. The maximum CaO conversion is about 76% in end of period 1 and the average CaO conversion in the reactor is 51%. The 2D distributions of CaO conversion, temperature, and reaction rates are also presented and discussed.  相似文献   

3.
In this study, sorption-enhanced ethanol steam reforming (SEESR) is investigated using a Ce-Ni/MCM-41 as a catalyst in the presence of Na or/and Zr promoted CaO-based adsorbents. Ce-Ni/MCM-41 and promoted sorbents were synthesized by wet impregnation method. The catalyst was characterized by XRD, FTIR, TGA, EFSEM, TEM, H2-TPR and N2 adsorption/desorption and promoted sorbents were studied by XRD, EFSEM, BET, TEM and TGA analysis. Sorption experiments were performed to verify sorbent activity for CO2 removing. The results indicated that with doping different promoter on CaO sorbent and also with increasing Na loading, there was an increase in BET surface area, the reduction in particle size and thereupon an enhancement in CO2 sorption capacity. Higher BET surface area, smaller particle size, and superior CO2 sorption capacity were obtained on Na-Zr-CaO sorbent. Sorption-enhanced steam reforming process of ethanol on synthesized catalyst and sorbents were performed at 600 °C and water to ethanol molar ratio of 6. The effect of sorbent to catalyst ratio and the arrangement of sorbent and catalyst (like two separated layers and the mixture of sorbent and catalyst in a single layer) were also studied. The best results were demonstrated on Na-Zr-CaO sorbent and with the separated array. Hydrogen production via a SEESR process with Na-Zr-CaO as sorbent was ∼94% that is 24% more than that of conventional ethanol steam reforming (ESR) reaction.  相似文献   

4.
A novel two-step sorption enhanced staged gasification of biomass for H2 production was proposed and studied using Aspen Plus software. An equilibrium model based on Gibbs free energy minimization was developed and validated. The results showed that the two-step process was more advantageous for H2 production compared with the conventional steam gasification and the one-step process. The independent control of each stage could realize a high temperature steam gasification in the first stage and a subsequent lower temperature steam reforming in the second stage, which thus promoted the gasification of biomass and benefited the water gas shift (WGS) reaction to produce more H2. Meanwhile, the in situ CO2 absorption of CaO in the second stage could enrich the H2 concentration in the product gas, and also further shifted the WGS reaction equilibrium to convert more CO to H2. With further introduction of catalyst for steam methane reforming (SMR), high-purity H2 with the concentration of 99.7 vol% and yield of 142.8 g/kg daf biomass could be achieved.  相似文献   

5.
Thermodynamic equilibrium for sorption enhanced steam reforming of butanol (SESRB) to hydrogen was investigated using Gibbs free energy minimization method. The optimal operation conditions for SESRB are at 800 K, the steam-to-butanol molar ratio of 10, the calcium oxide-to-butanol molar ratio of 8 and atmospheric pressure. Under the optimal conditions, complete conversion of butanol, 97.07% concentration of H2 and 0.05% concentration of CO2, and efficiency of 86.60% could be achieved and at which no coke tends to form. Under the same conditions in SRB, 58.18% concentration of H2, 21.62% concentration of CO2, and energy efficiency of 81.51% could be achieved. Butanol steam reforming with CO2 adsorption has the higher H2 content and efficiency, and lower CO2 content than that without adsorption under the same reaction conditions. In addition, reaction conditions for coke-free and coke-formed regions are also discussed in butanol steam reforming with or without CO2 separation.  相似文献   

6.
Liquefied petroleum gas (LPG) is a mixture of hydrocarbons that has a broad distribution network in several countries. In this context, the objective of this study was to evaluate the steam reforming of LPG using catalysts derived from hydrotalcites. The precursors were characterized by X-ray fluorescence analysis, BET surface area, temperature programmed reduction, thermogravimetric analysis, in situ X-ray diffraction spectroscopy and X-ray absorption spectroscopy. Catalysts were synthesized with 47.5% Ni content without increasing the particle diameter. All catalysts showed the formation of the same gas phase products: H2, CO, CH4 and CO2. Ni1.64Mg1.36Al catalyst showed the highest conversion (about 70%) and lower deactivation by coke deposition after 24 h reaction. The use of higher reaction temperatures (1073 and 1173 K), for steam reforming process, resulted in higher conversions of LPG, increased formation of H2 and lowered the formation of carbon deposits.  相似文献   

7.
Optimization of steam methane reforming (SMR) reaction by CO2 sorption enhancement was investigated. In this study, the sorption-enhanced steam methane reforming reaction (SESMR) was conducted to maximize hydrogen production via suitable adjustments in the operating conditions of the reaction, which include the molar ratio of steam to CH4, space velocity, and temperature. The reforming catalysts were prepared by a physical mixture of 20 wt% Ni/Al2O3 and CaO. The results reveal that there are significant differences in CH4 conversion between the SMR and the SESMR from 18% to 108%; this conversion strongly depended on the reaction conditions. High-purity H2 products (98.9%) with <0.1 ppmv CO were obtained by SESMR under the suitable conditions of 2600 cm3/g/h, steam/CH4 molar ratio of 4 and 823 K. This implies that the high-quality H2 produced through the SESMR process could be directly used for the proton-exchange membrane fuel cell.  相似文献   

8.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

9.
Ni–Cu catalysts supported on different materials were tested in ethanol steam reforming reaction for hydrogen production. These catalysts were evaluated at reaction temperature of 400 °C under atmospheric pressure. The reagents, with a water/ethanol molar ratio equal to 10, were fed at 70 dm3/(h gcat) (after vaporization). Analysis of the ethanol conversion, as well as evaluation and quantification of the reaction products, indicated the catalyst 10% Ni–1% Cu/Ce0.6Zr0.4O2 as the most appropriate for the ethanol steam reforming under investigated reaction conditions, among the studied catalysts. During 8 h of reaction this catalyst presented an average ethanol conversion of 43%, producing a high amount of H2 by steam reforming and by ethanol decomposition and dehydrogenation parallel reactions. Steam reforming, among the observed reactions, was quantified by the presence of carbon dioxide. About 60% of the hydrogen was produced from ethanol steam reforming and 40% from parallel reactions.  相似文献   

10.
This paper presents an experimental investigation for an improved process of sorption-enhanced steam reforming of methane in an admixture fixed bed reactor. A highly active Rh/CeαZr1−αO2 catalyst and K2CO3-promoted hydrotalcite are utilized as novel catalyst/sorbent materials for an efficient H2 production with in situ CO2 capture at low temperature (450–500 °C). The process performance is demonstrated in response to temperature (400–500 °C), pressure (1.5–6.0 bar), and steam/carbon ratio (3–6). Thus, direct production of high H2 purity and fuel conversion >99% is achieved with low level of carbon oxides impurities (<100 ppm). A maximum enhancement of 162% in CH4 conversion is obtained at a temperature of 450 °C and a pressure of 6 bar using a steam/carbon molar ratio of 4. The high catalyst activity of Rh yields an enhanced CH4 conversion using much lower catalyst/sorbent bed composition and much smaller reactor size than Ni-based sorption enhanced processes at low temperature. The cyclic stability of the process is demonstrated over a series of 30 sorption/desorption cycles. The sorbent exhibited a stable performance in terms of the CO2 working sorption capacity and the corresponding CH4 conversion obtained in the sorption enhanced process. The process showed a good thermal stability in the temperature range of 400–500 °C. The effects of the sorbent regeneration time and the purge stream humidity on the achieved CH4 conversion are also studied. Using steam purge is beneficial for high degree of CO2 recovery from the sorbent.  相似文献   

11.
The distributed power generation of methanol steam reforming reactor combined with solid oxide fuel cell (SOFC) has the characteristics of outstanding economic advantages. In this paper, a methanol steam reforming reactor was designed which integrates catalyst combustion, vaporization and reforming. By catalyst combustion, it can achieve stable operation to supply fuel for kW-class SOFC in real time without additional heating equipment. The optimal operating condition of the reforming reactor is 523–553 K, and the steam to carbon ratio (S/C) is 1.2. To study the reforming performance, methanol steam reforming (MSR), methanol decomposition (MD), water-gas shift (WGS) were considered. Operating temperature is the greatest factor affecting reforming performance. The higher the reaction temperature, the lower the H2 and CO2, the higher the CO and the methanol conversion rate. The methanol conversion rate is up to 95.03%. The higher the liquid space velocity (LHSV), the lower the methanol conversion rate, the lowest is 90.7%. The temperature changes of the reforming reactor caused by the load change of stack takes about 30 min to reach new balance. Local hotspots within the reforming reactor lead to an excessive local temperature to test a small amount of CH4 in the reforming gas. The methanation reaction cannot be ignored at the operating temperature. The reforming gas contains 70–75% H2, 3–8% CO, 18–22% CO2 and 0.0004–0.3% CH4. Trace amounts of C2H6 and C2H4 are also found in some experiments. The reforming reactor can stably supply the fuel for up to 1125 W SOFC.  相似文献   

12.
Catalytic steam reforming of renewable bio-oxygenates coupled with in-situ CO2 capture is a promising option for sustainable H2 production. The current work focuses on high purity H2 production over Ni–CaO–Al2O3 bi-functional materials via sorption enhanced steam reforming of ethanol (SEESR). To ensure the uniform distribution of catalytic sites (Ni), adsorptive sites (CaO) and stabilizer (Al2O3) in the bi-functional materials, a citrate sol-gel synthetic route was employed. These materials were characterized by XRD, N2 physical adsorption, SEM, TG and TPR techniques. It was revealed that the existence of CaO in bi-functional materials could not only in-situ remove CO2, but also play the role of inhibiting the formation of harmful spinel phase. The stabilizing role of Al component against capacity decay was confirmed, whereas the presence of Ni ions had a negative effect on the cycle CO2 uptake. The sample of Ni/Al/Ca-85.5 possessed large specific surface area, abundant porosity with fluffy morphology, and thereby, exhibited the best CO2 sorption capacity during 20 carbonation/calcination cycles. The highest H2 concentration of 96% was obtained through the SEESR during the pre-breakthrough period when the Ni/Al/Ca-85.5 was employed. Over the optimized bi-functional material, the effect of operating conditions on the SEESR was investigated and the results indicated that temperature of 600 °C, reaction liquid space velocity of 0.05 ml/min and steam/ethanol ratio of 4 were the suitable conditions. After 10 cycles, the bi-functional material of Ni/Al/Ca-85.5 also showed the best performance, with a H2 purity of about 90% and pre-breakthrough time of 18 min, conforming the high potential of this material for SEESR process.  相似文献   

13.
A comparative thermodynamic analysis of ethanol reforming reactions was conducted using an in-house code. Equilibrium compositions were estimated using the Lagrange multipliers method, which generated systems of non-linear algebraic equations, solved numerically. Effects of temperature, pressure and steam to ethanol, O2 to ethanol and CO2 to ethanol ratios on the equilibrium compositions were evaluated. The validation was done by comparing these data with experimental literature. The results of this work proved to be useful to foresee whether the experimental results follow the stoichiometry of the reactions involved in each process. Mole fractions of H2 and CO2 proved to be the most reliable variables to make this type of validation. Maximization of H2 mole fraction was attained between 773 and 873 K, but maximum net mole production of H2 was only achieved at higher temperatures (>1123 K). This work also advances in the thermodynamics of solid-gas phase interactions. A solid phase thermodynamic analysis was performed to confirm that Co0 formation from CoO is spontaneous under steam reforming conditions. The results showed that this reduction process occurs only for temperatures higher than 430 K. It was also found that once reduced, Co based catalysts will never oxidize back to Co3O4.  相似文献   

14.
The effect that sodium has on Pt/m-ZrO2 catalyst was investigated during ethanol steam reforming (ESR). Sodium doping decreases the catalytic activity, but significantly increases CO2 selectivity, providing a means of improving H2 selectivity. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results suggest that acetate species are intermediates in the reaction and that their decomposition can follow different routes depending on the catalyst formulation. When Pt/m-ZrO2 is promoted by sodium, decarboxylation is the favored route: forward decomposition of acetate at lower temperatures yields essentially methane and adsorbed carbonate, further decomposing to carbon dioxide. At higher temperature, the methane precursor can be intercepted by the metal for further steam reforming or a separate methane steam reforming catalyst can be used downstream. Decarbonylation is instead favored for the unpromoted catalyst; decarbonylation tends to lower the H2 selectivity of the overall process. Finally, the addition of sodium promotes C–C scission as methane formation is detected at lower temperature by DRIFTS and TPD-MS of ethanol in steam. This is analogous to formate C–H bond breaking in methanol steam reforming, steam-assisted formic acid decomposition, and water-gas shift reactions. In catalytic testing of ESR utilizing a tubular reactor at low temperatures (where steam reforming of CH4 is limited), methane and CO2 selectivities are higher with the Na-promoted catalyst than with the unpromoted catalyst. Thus, promotion of the forward decomposition of acetate route by Na addition is confirmed.  相似文献   

15.
Exergy efficiency analysis tool is used to evaluate sorption enhanced steam reforming in comparison with the industrial hydrogen production route, steam reforming. The study focuses on hydrogen production for use in high pressure processes. Thermodynamic sensitivity analysis (effect of reforming temperature on hydrogen yield and reforming enthalpy) was performed to indicate the optimum temperature (650 °C) for the sorption enhanced reforming. The pressure was selected to be, for both cases, 25 bar, a typical pressure used in the industrial (conventional) process. Atmospheric pressure, 1000 °C and CO2 as inert gas were specified as the optimum operating parameters for the regeneration of the sorbent after performing exergy efficiency analysis of three realistic case scenarios. Aspen Plus simulation process schemes were built for conventional and sorption enhanced steam reforming processes to attain the mass and energy balances required to assess comparatively exergy analysis. Simulation results showed that sorption enhanced reforming can lead to a hydrogen purity increase by 17.3%, along with the recovery of pure and sequestration-ready carbon dioxide. The exergy benefit of sorption enhanced reforming was calculated equal to 3.2%. Analysis was extended by adding a CO2 separation stage in conventional reforming to reach the hydrogen purity of sorption enhanced reforming and enable a more effective exergy efficiency comparison. Following that analysis, sorption enhanced reforming gained 10.8% in exergy efficiency.  相似文献   

16.
In this study, the continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production by a simultaneous flow concept of catalyst and sorbent for reaction and regeneration using two moving-bed reactors has been evaluated experimentally. A Ni-based catalyst (NiO/NiAl2O4) and a lime sorbent (CaO) were used for glycerol steam reforming with and without in-situ CO2 removal at 500 °C and 600 °C. The simultaneous regeneration of catalyst and sorbent was carried out with the mixture gas of N2 and steam at 900 °C. The product gases were measured by a GC gas analyzer. It is obvious that the amounts of CO2, CO and CH4 were reduced in the sorption-enhanced steam reforming of glycerol, and the H2 concentration is greatly increased in the pre-CO2 breakthrough periods within 10 min both 500 °C and 600 °C. The extended time of operation for high-purity hydrogen production and CO2 capture was obtained by the continuous sorption-enhanced steam reforming of glycerol. High-purity H2 products of 93.9% and 96.1% were produced at 500 °C and 600 °C and very small amounts of CO2, CH4 and CO were formed. The decay in activity during the continuous reaction-regeneration of catalyst and sorbent was not observed.  相似文献   

17.
Recently, the steam reforming of biofuels has been presented as a potential hydrogen source for fuel cells. Because this scenario represents an interesting opportunity for Colombia (South America), which produces large amounts of bioethanol, the steam reforming of ethanol was studied over a bimetallic RhPt/La2O3 catalyst under bulk mass transfer conditions. The effect of temperature and the initial concentrations of ethanol and water were evaluated at space velocities above 55,000 h−1 to determine the conditions that maximize the H2/CO ratio and reduce CH4 production while maintaining 100% conversion of ethanol. These requirements were accomplished when 21 mol% H2O and 3 mol% C2H5OH (steam/ethanol molar ratio = 7) were reacted at 600 °C. The catalyst stability was assessed under these reaction conditions during 120 h on stream, obtaining ethanol conversions above 99% during the entire test. The effect of both H2 and air flows as catalyst regeneration treatments were evaluated after 44 and 67 h on stream, respectively. The results showed that H2 treatment accelerated catalyst deactivation, and air regeneration increased both the catalyst stability and the H2 selectivity while decreasing CH4 generation. Fresh and spent catalyst samples were characterized by TEM/EDX, XPS, TPR, and TGA. Although the Rh and Pt in the fresh catalyst were completely reduced, the spent samples showed a partial oxidation of Rh and small amounts of carbonaceous residue. A possible Rh–Pt–Rh2O3 structure was proposed as the active site on the catalyst, which was regenerated by air treatment.  相似文献   

18.
The effect of non-uniform temperature on the sorption-enhanced steam methane reforming (SE-SMR) in a tubular fixed-bed reactor with a constant wall temperature of 600 °C is investigated numerically by an experimentally verified unsteady two-dimensional model. The reactor uses Ni/Al2O3 as the reforming catalyst and CaO as the sorbent. The reaction of SMR is enhanced by removing the CO2 through the reaction of CaO + CO2 → CaCO3 based on the Le Chatelier's principle. A non-uniform temperature distribution instead of a uniform temperature in the reactor appears due to the rapid endothermic reaction of SMR followed by an exothermic reaction of CO2 sorption. For a small weight hourly space velocity (WHSV) of 0.67 h?1 before the CO2 breakthrough, both a low and a high temperature regions exist simultaneously in the catalyst/sorbent bed, and their sizes are enlarged and the temperature distribution is more non-uniform for a larger tube diameter (D). Both the CH4 conversion and the H2 molar fraction are slightly increased with the increase of D. Based on the parameters adopted in this work, the CH4 conversion, the H2 and CO molar fractions at D = 60 mm are 84.6%, 94.4%, and 0.63%, respectively. After CO2 breakthrough, the reaction of SMR dominates, and the reactor performance is remarkably reduced due to low reactor temperature.For a higher value of WHSV (4.03 h?1) before CO2 breakthrough, both the reaction times for SMR and CO2 sorption become much shorter. The size of low temperature region becomes larger, and the high temperature region inside the catalyst/sorbent bed doesn't exist for D ≥ 30 mm. The maximum temperature difference inside the catalyst/sorbent bed is greater than 67 °C. Both the CH4 conversion and H2 molar fraction are slightly decreased with the increase of D. However, this phenomenon is qualitatively opposite to that for small WHSV of 0.67 h?1. The CH4 conversion and H2 molar fraction at D = 60 mm are 52.6% and 78.7%, respectively, which are much lower than those for WHSV = 0.67 h?1.  相似文献   

19.
The performance of gallium promoted cobalt-ceria catalysts for ethanol steam reforming (ESR) was studied using H2O/C2H5OH = 6/1 mol/mol at 500 °C. The catalysts were synthetized via cerium-gallium co-precipitation and wetness impregnation of cobalt. A detailed characterization by N2-physisorption, XRD, H2-TPR and TEM allowed the normalization of contact time and rationalization of the role of each catalysts component for ESR. The gallium promoted catalyst, Co/Ce90Ga10Ox, was more efficient for the ethanol conversion to H2 and CO2, and the production of oxygenated by-products (such as, acetaldehyde and acetone) than Co/CeO2. The catalytic performance is explained assuming that: (i) bare ceria is able to dehydrogenate ethanol to ethylene; (ii) Ce–O–Ga interface catalyzes ethanol reforming; (iii) both Ce–O–Co and Ce–O–Ga interfaces takes part in acetone production; and (iv) cobalt sites further allow C–C scission. It is suggested that a cooperative role between Co and Ce–O–Ga sites enhance the H2 and CO2 yields under ESR conditions.  相似文献   

20.
Bifunctional composite catalysts are very intrigued to produce hydrogen via CO2 sorption enhanced CH4/H2O reforming. However, their hydrogen production performance declined over multiple cycles, owing to the structure collapse and the sintering of active component under high-temperature regeneration. This work reported the facile synthesis of long-lasting Ni–Al2O3/CaO–CaZrO3 composite catalysts with less inert components (36 wt%) for stable hydrogen production over the multiple cycles of CO2 sorption enhanced CH4/H2O reforming. The effects of reaction and regeneration temperature on the hydrogen production performance of Ni–Al2O3/CaO–CaZrO3 were explored. Ni–Al2O3/CaO–CaZrO3 demonstrated high activity and stability while fixing reaction temperature as 600 °C and regeneration temperature as 750 °C. Of particular importance, H2 concentration was 98 vol% even after 10 hydrogen production cycles due to the inert component CaZrO3 having a cross-linked structure. The distribution of CaZrO3 in the composite as a coral-like structure inhibited the sintering of CaO through high Taman temperature and physical separation. Moreover, it provided the skeleton support and pore volume for the repeated expansion and contraction process of CaO to CaCO3 during the cycling process. Finally, the sintering of Ni slowed down in appropriate regeneration temperature to maintain the structure of the composite catalyst, which further improved the catalyst's stability over multiple cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号