首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhiming Cui 《Electrochimica acta》2008,53(27):7807-7811
A simple and rapid synthesis method (denoted as modified impregnation method, MI) for PtRu/CNTs (MI) and PtRu/C (MI) was presented. PtRu/CNTs (MI) and PtRu/C (MI) catalysts were characterized by transmission electron microscopy (TEM) and X-ray diffractometry. It was shown that Pt-Ru particles with small average size (2.7 nm) were uniformly dispersed on carbon supports (carbon nanotubes and carbon black) and displayed the characteristic diffraction peaks of Pt face-centered cubic structure. Cyclic voltammetry and chronoamperometry showed that the Pt-Ru/CNTs (MI) catalyst exhibited better methanol oxidation activities than Pt-Ru/C (MI) catalyst and commercial Pt-Ru/C (E-TEK) catalyst. The single cells with Pt-Ru/CNTs (MI) catalyst exhibited a power density of 61 mW/cm2, about 27% higher than those single cells with commercial Pt-Ru/C (E-TEK) catalyst.  相似文献   

2.
Carbon-supported Pt and Pt3Co catalysts with a mean crystallite size of 2.5 nm were prepared by a colloidal procedure followed by a carbothermal reduction. The catalysts with same particle size were investigated for the oxygen reduction in a direct methanol fuel cell (DMFC) to ascertain the effect of composition. The electrochemical investigations were carried out in a temperature range from 40 to 80 °C and the methanol concentration feed was varied in the range 1-10 mol dm−3 to evaluate the cathode performance in the presence of different conditions of methanol crossover. Despite the good performance of the Pt3Co catalyst for the oxygen reduction, it appeared less performing than the Pt catalyst of the same particle size for the cathodic process in the presence of significant methanol crossover. Cyclic voltammetry analysis indicated that the Pt3Co catalyst has a lower overpotential for methanol oxidation than the Pt catalyst, and thus a lower methanol tolerance. Electrochemical impedance spectroscopy (EIS) analysis showed that the charge transfer resistance for the oxygen reduction reaction dominated the overall DMFC response in the presence of high methanol concentrations fed to the anode. This effect was more significant for the Pt3Co/KB catalyst, confirming the lower methanol tolerance of this catalyst compared to Pt/KB. Such properties were interpreted as the result of the enhanced metallic character of Pt in the Pt3Co catalyst due to an intra-alloy electron transfer from Co to Pt, and to the adsorption of oxygen species on the more electropositive element (Co) that promotes methanol oxidation according to the bifunctional theory.  相似文献   

3.
The electrodeposition of platinum and ruthenium was carried out on carbon electrodes to prepare methanol anodes with different Pt/Ru atomic ratios using a galvanostatic pulse technique. Characterizations by XRD, TEM, EDX and atomic absorption spectroscopy indicated that most of the electrocatalytic anodes consisted of 2 mg cm–2 of Pt–Ru alloy particles with the desired composition and with particle sizes ranging from 5 to 8 nm. Electrochemical tests in a single DMFC show that these electrodes are very active for methanol oxidation and that the best Pt/Ru atomic ratio in the temperature range used (50–110 °C) is 80:20. The influence of the relaxation time t off was also studied and it appeared that a low t off led to smaller particle sizes and higher performances in terms of current density and power density.  相似文献   

4.
阳极催化剂是影响直接甲醇燃料电池(DMFC)性能及成本的主要因素之一,从催化剂载体选择、复合催化剂的制备、非贵金属催化剂研究三方面综述了DMFC阳极催化剂国内外研究现状,并进行了简要分析,展望了其应用前景。  相似文献   

5.
A comparative study of the use of supported and unsupported catalysts for direct methanol fuel cells has been performed. The effect of catalyst loading, fuel concentration and temperature dependence on the anode, cathode and full fuel cell performance was determined in a fuel cell equipped with a reversible hydrogen reference electrode. Although the measured specific activities of supported catalysts were as much as 3-fold greater than the unsupported catalysts, membrane electrode assemblies prepared with supported catalysts showed no improvement with loadings above 0.5 mg/cm2. Fuel cells utilizing 0.46 mg/cm2 supported catalyst electrodes performed as well as unsupported catalyst electrodes with 2 mg/cm2. The temperature dependence and methanol concentration dependence studies both suggest increased methanol permeation through the thinner supported catalyst layers relative to the unsupported catalyst layers.  相似文献   

6.
The oxidation of formic acid by the palladium catalysts supported on carbon with high surface area was investigated. Pd/C catalysts were prepared by using the impregnation method. 30 wt% and 50 wt% Pd/C catalysts had a high BET surface area of 123.7 m2/g and 89.9 m2/g, respectively. The fuel cell performance was investigated by changing various parameters such as anode catalyst types, oxidation gases and operating temperature. Pd/C anode catalysts had a significant effect on the direct formic acid fuel cell (DFAFC) performance. DFAFC with Pd/C anode catalyst showed high open circuit potential (OCP) of about 0.84 V and high power density at room temperature. The fuel cell with 50 wt% Pd/C anode catalyst using air as an oxidant showed the maximum power density of 99 mW/cm2. On the other hand, a fuel cell with 50 wt% Pd/C anode catalyst using oxygen as an oxidant showed a maximum power density of 163 mW/cm2 and the maximum current density of 590 mA/cm2 at 60 °C.  相似文献   

7.
The oxidation of acetaldehyde on carbon supported Pt/Vulcan, PtRu/Vulcan and Pt3Sn/Vulcan nanoparticle catalysts and, for comparison, on polycrystalline Pt and on an unsupported PtRu0.2 catalyst, was investigated under continuous reaction and continuous electrolyte flow conditions, employing electrochemical and quantitative differential electrochemical mass spectroscopy (DEMS) measurements. Product distribution and the effects of reaction potential and reactant concentration were investigated by potentiodynamic and potentiostatic measurements. Reaction transients, following both the Faradaic current as well as the CO2 related mass spectrometric intensity, revealed a very small current efficiency for CO2 formation of a few percent for 0.1 m acetaldehyde bulk oxidation under steady-state conditions on all three catalysts, the dominant oxidation product being acetic acid. Pt alloy catalysts showed a higher activity than Pt/Vulcan at lower potential (0.51 V), but do not lead to a better selectivity for complete oxidation to CO2. C–C bond breaking is rate limiting for complete oxidation at potentials with significant oxidation rates for all three catalysts. The data agree with a parallel pathway reaction mechanism, with formation and subsequent oxidation of COad and CH x, ad species in the one pathway and partial oxidation to acetic acid in the other pathway, with the latter pathway being, by far, dominant under present reaction conditions.  相似文献   

8.
The optimum Pt and Ru atomic composition of a carbon-supported Pt–Ru alloy (Pt–Ru/C) used in a practical direct methanol fuel cell (DMFC) anode was investigated. The samples were prepared by the polygonal barrel-sputtering method. Based on the physical properties of the prepared Pt–Ru/C samples, the Pt–Ru alloy was found to be deposited on a carbon support. The microscopic characterization showed that the deposited alloy forms nanoparticles, of which the atomic ratios of Pt and Ru (Pt:Ru ratios) are uniform and are in accordance with the overall Pt:Ru ratios of the samples. The formation of the Pt–Ru alloy is also supported by the electrochemical characterization. Based on these results, methanol oxidation on the Pt–Ru/C samples was measured by cyclic voltammetry and chronoamperometry. The results indicated that the methanol oxidation activities of the prepared samples depended on the Pt:Ru ratios, of which the optimum Pt:Ru ratio is 58:42 at.% at 25 °C and 50:50 at.% at 40 and 60 °C. This temperature dependence of the optimum Pt:Ru ratio is well explained by the relationship between the methanol oxidation reaction process and the temperature, which is reflected in the rate-determining steps considered from the activation energies. It should be noted that at 25–60 °C, the Pt–Ru/C with Pt:Ru = 50:50 at.% prepared by our sputtering method has the higher methanol oxidation activity than that of a commercially available sample with the identical overall Pt:Ru ratio. Consequently, the polygonal barrel-sputtering method is useful to prepare the practical DMFC anode catalysts with the high methanol oxidation activity.  相似文献   

9.
Carbon-supported Pt/Mo-oxide catalysts were prepared, and the reformate tolerances of Pt/MoOx/C and conventional PtRu/C anodes were examined to clarify the features and differences between these catalysts. Fuel cell performance was evaluated under various reformate compositions and operating conditions, and the CO concentrations at the anode outlet were analyzed simultaneously using on-line gas chromatography. Pt/MoOx showed better CO tolerance than PtRu with CO(80 ppm)/H2 mixtures, especially at higher fuel utilization conditions, which is mainly due to the higher catalytic activity of Pt/MoOx for the water-gas shift (WGS) reaction and electro-oxidation of CO. In contrast, the CO2 tolerance of Pt/MoOx was much worse than that of PtRu with a CO2(20%)/H2 mixture. The results of voltammetry indicated that the coverage of adsorbates generated by CO2 reduction on Pt/MoOx was higher than that on PtRu, and therefore, the electro-oxidation of H2 is partly inhibited on Pt/MoOx in the presence of 20% CO2. With CO(80 ppm)/CO2(20%)/H2, the voltage losses of Pt/MoOx and PtRu are almost equal to the sum of the losses with each contaminant component. Although the adsorbate coverage on Pt/MoOx increases in the presence of 20% CO2, CO molecules in the gas phase could still adsorb on Pt through an adsorbate ‘hole’ to promote WGS or electro-oxidation reactions, which leads to a reduction in the CO concentration under CO/CO2/H2 feeding conditions.  相似文献   

10.
This work reports on the oxygen reduction activity of several non-precious metal (non-PGM) catalysts for oxygen reduction reaction (ORR) at the fuel cell cathode, including pyrolyzed CoTPP, FeTPP, H2TMPP, and CoTMPP. Of the studied catalysts, pyrolyzed CoTMPP (Co-tetramethoxyphenylporphyrin) was found to perform significantly better than other materials. The catalyst underwent a thorough testing in both hydrogen-air polymer electrolyte fuel cell (PEFC) and direct methanol fuel cell (DMFC). It was found that CoTMPP cathode can sustain currents that are only 2-3 times lower than those obtained with a conventional Pt-black cathode in an H2-air PEFC. DMFC experiments, including methanol crossover and methanol tolerance measurements, indicate high ORR selectivity of the CoTMPP catalyst. Based on results obtained to date, the CoTMPP-based catalyst offers promise for the use in conventional and mixed-reactant DMFCs operating with concentrated methanol feeds. However, hydrogen-air fuel cell life data, consisting of over 800 h of continuous cell operation, indicate that improvement to long-term stability of the CoTMPP catalyst will be required to make it practical.  相似文献   

11.
Electrocatalytic activities of various carbon-supported platinum–chromium alloy electrocatalysts towards oxygen reduction in 1 mol l−1 H2SO4 and in 1 mol l−1 H2SO4/1–3 mol l−1 CH3OH, were investigated by means of rotating disc electrode experiments and in solid polymer electrolyte direct methanol fuel cells. The activity of these electrocatalysts for methanol oxidation was evaluated using cyclic voltammetry. It was found that Pt9Cr/C prepared by reduction with NaBH4 exhibits the lowest activity for methanol oxidation and the highest activity for oxygen reduction in the presence of methanol, in comparison to commercial Pt/C, Pt3Cr/C and PtCr/C electrocatalysts.  相似文献   

12.
Lin Gao 《Electrochimica acta》2004,49(8):1281-1287
Yields were determined for the CO2 produced upon the electrochemical oxidation of 1.0 M methanol in 0.1 M HClO4 at the following four fuel cell catalyst systems: Pt black, Pt at 10 wt.% metal loading on Vulcan XC-72R carbon (C/Pt, 10%), PtRu black at 50 at.% Pt, 50 at.% Ru (PtRu (50:50) black), and PtRu at 30 wt.% Pt, 15 wt.% Ru loading on Vulcan XC-72R carbon (C/PtRu, 30 wt.% Pt, 15 wt.% Ru). Samples were electrolyzed in a small volume (50 μl) arrangement for a period of 180 s keeping the reactant depletion in the cell below 1%. The dissolved CO2 produced was determined ex situ by infrared spectroscopy in a micro-volume transmission flow cell. For the PtRu materials, the efficiencies for CO2 formation were near 100% at reaction potentials in the range between 0.4 V (versus the reversible hydrogen electrode (RHE), VRHE ) and 0.9 VRHE. At the Pt catalysts, the yields of CO2 approached 80% between 0.8 and 1.1 VRHE and declined rapidly below 0.8 VRHE.  相似文献   

13.
Palladium particles supported on porous carbon of 20 and 50 nm pore diameters were prepared and applied to the direct formic acid fuel cell (DFAFC). Four different anode catalysts with Pd loading of 30 and 50 wt% were synthesized by using impregnation method and the cell performance was investigated with changing experimental variables such as anode catalyst loading, formic acid concentration, operating temperature and oxidation gas. The BET surface areas of 20 nm, 30 wt% and 20 nm, 50 wt% Pd/porous carbon anode catalysts were 135 and 90 m2/g, respectively. The electro-oxidation of formic acid was examined in terms of cell power density. Based on the same amount of palladium loading with 1.2 or 2 mg/cm2, the porous carbon-supported palladium catalysts showed higher cell performance than unsupported palladium catalysts. The 20 nm, 50 wt% Pd/porous carbon anode catalyst generated the highest maximum power density of 75.8 mW/cm2 at 25 °C. Also, the Pd/porous carbon anode catalyst showed less deactivation at the high formic acid concentrations. When the formic acid concentration was increased from 3 to 9 M, the maximum power density was decreased from 75.8 to 40.7 mW/cm2 at 25 °C. Due to the high activity of Pd/porous carbon catalyst, the cell operating temperature has less effect on DFAFC performance.  相似文献   

14.
Hollow graphitic carbon spheres (HGCSs) with a high surface area are produced by the carbonization of hollow polymer spheres obtained by the polymerization of core/shell-structured pyrrole micelles. HGCSs are employed as a carbon support material in a direct methanol fuel cell catalyst, and their effect on the electrocatalytic activity toward methanol oxidation is investigated. Pt catalyst supported on HGCSs shows a better electrocatalytic activity compared to that on Vulcan XC-72, which has been commonly used in fuel cell catalysts. The observed enhancement in the electrocatalytic activity is attributed to the improved electronic conductivity and high surface area of HGCSs.  相似文献   

15.
This research aims at increasing the utilization of platinum-ruthenium alloy (Pt-Ru) catalysts and thus lowering the catalyst loading in anodes for methanol electrooxidation. The direct methanol fuel cell’s (DMFC) anodic catalysts, Pt-Ru/C, were prepared by chemical reduction with a reducing agent added in two kinds of solutions under different circumstances. The reducing agent was added in hot solution with the protection of inert gases or just air, and in cold solution with inert gases. The catalysts were treated at different temperatures. Their performance was tested by cyclic voltammetry and potentiostatic polarization by utilizing their inherent powder microelectrode in 0.5 mol/L CH3OH and 0.5 mol/LH2SO4 solution. The structures and micro-surface images of the catalysts were determined and observed by X-ray diffraction and transmission electron microscopy, respectively. The catalyst prepared in inert gases showed a better catalytic performance for methanol electrooxidation than that prepared in air. It resulted in a more homogeneous distribution of the Pt-Ru alloy in carbon. Its size is small, only about 4.5 nm. The catalytic performance is affected by the order of the reducing agent added. The performance of the catalyst prepared by adding the reductant at constant temperature of the solution is better than that prepared by adding it in the solution at 0°C and then heating it up to the reducing temperature. The structure of the catalyst was modified, and there was an increase in the conversion of ruthenium into the alloyed state and an increase in particle size with the ascension of heat treatment temperature. In addition, the stability of the catalyst was improved after heat treatment. Translated from Journal of Harbin Institute of Technology, 2006, 38 (4): 541-545 [译自: 哈尔滨工业大学学报]  相似文献   

16.
Membrane electrode assemblies (MEA) were prepared using PtRu black and 60 wt.% carbon-supported platinum (Pt/C) as their anode and cathode catalysts, respectively. The cathode catalyst layers were fabricated using various amounts of Pt (0.5 mg cm−2, 1.0 mg cm−2, 2.0 mg cm−2, and 3.0 mg cm−2). To study the effect of carbon support on performance, a MEA in which Pt black was used as the cathode catalyst was fabricated. In addition, the effect of methanol crossover on the Pt/C on the cathode side of a direct methanol fuel cell (DMFC) was investigated. The performance of the single cell that used Pt/C as the cathode catalyst was higher than single cell that used Pt black and this result was pronounced when highly concentrated methanol (above 2.0 M) was used as the fuel.  相似文献   

17.
丁鑫  张栋铭  焦纬洲  刘有智 《化工进展》2021,40(9):4918-4930
直接甲醇燃料电池(direct methanol fuel cells, DMFC)由于其高效、清洁等优点,成为替代化石能源的理想新能源装置。催化剂作为DMFC中重要的组成部分,通过降低反应活化能,解决甲醇需要高过电势才能被电氧化的问题。但是目前DMFC阳极催化剂存在催化活性低、抗CO毒性差以及成本较高等问题,限制了DMFC的商业化。本文介绍了甲醇的催化电氧化原理,从Pt基催化剂、非Pt基催化剂、催化剂载体三个方面对DMFC阳极催化剂国内外研究进展进行了综述。介绍了通过选择合适晶面、添加助催化剂、制备特殊形貌、选择合适的载体4种方法对提高催化剂性能、降低催化剂成本的研究现状。甲醇在Pt(100)晶面上的催化活性较好但是抗CO毒性较弱;根据双功能理论和电子调变理论,制备的Pt-M合金催化剂具有更高的抗CO毒性和甲醇催化活性;非Pt基催化剂的制备为降低催化剂成本提供了研究思路;选择合适的催化剂载体,利用载体与催化剂之间的相互作用,也成为解决DMFC阳极催化剂目前面临的易中毒、活性低、成本高等问题的解决方法。  相似文献   

18.
Parametric investigation of the polyol process for the preparation of carbon-supported Pt nanoparticles as catalysts for fuel cells was carried out. It was found that the concentration of glycolate anion, which is a function of pH, plays an important role in controlling Pt particle size and loading on carbon. It was observed that Pt loading decreased with increasing alkalinity of the solution. As evidenced by zeta potential measurement, this was mainly due to poor adsorption or repulsive forces between the metal colloids and the supports. In order to modify the conventional polyol process, the effect of the gas purging conditions on the characteristics of Pt/C was examined. By the optimization of the gas environment during the reaction, it was possible to obtain high loading of 39.5 wt% with a 2.8 nm size of Pt particle. From the single cell test, it was found that operating in ambient O2 at 70 °C can deliver high performance of more than 0.6 V at 1.44 A cm−2.  相似文献   

19.
用微波间断升温法制备了3种Pt/C催化剂,运用循环伏安和线行扫描方法测试甲醇和吸附态CO在不同方法制备的Pt/C催化剂上的电催化氧化情况。发现在酸性溶液中,对于相同Pt载量的Pt(2)和Pt(3)催化剂,Pt(3)具有较小的Pt平均粒径及较高的电催化活性;对于具有较高Pt载量的Pt(1)催化剂,具有最小的平均粒径和最高的电催化活性。  相似文献   

20.
PtRu/C nanocatalysts were prepared by changing the molar ratio of citric acid to platinum and ruthenium metal salts (CA:PtRu) from 1:1, 2:1, 3:1 to 4:1 using sodium borohydride as a reducing agent. Transmission electron microscopy analysis indicated that well-dispersed smaller PtRu particles (2.6 nm) were obtained when the molar ratio was maintained at 1:1. X-ray diffraction analysis confirmed the formation of PtRu alloy; the atomic percentage of the alloy analyzed by the energy dispersive X-ray spectrum indicated an enrichment of Pt in the nanocatalyst. X-ray photoelectron spectroscopy measurements revealed that 83.34% of Pt and 79.54% of Ru were present in their metallic states. Both the linear sweep voltammetry and chronoamperometric results demonstrated that the 1:1 molar ratio catalyst exhibited a higher methanol oxidation current and a lower poisoning rate among all the other molar ratios catalysts. The CO stripping voltammetry studies showed that the E-TEK catalyst had a relatively higher CO oxidation current than did the 1:1 molar ratio catalyst. Testing of the PtRu/C catalysts at the anode of a direct methanol fuel cell (DMFC) indicated that the in-house PtRu/C nanocatalyst gave a slightly higher performance than did the E-TEK catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号