首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
Hydrogen is one of the most clean energy carrier and the best alternative for fossil fuels. In this study, thermodynamic analysis of modified Organic Rankine Cycle (ORC) integrated with Parabolic Trough Collector (PTC) for hydrogen production is investigated. The integrated system investigated in this study consists of a parabolic trough collector, a modified ORC, a single effect absorption cooling system and a PEM electrolyzer. By using parabolic trough collector, solar energy is converted heat energy and then produced heat energy is used in modified ORC to produce electricity. Electricity is then used for hydrogen production. The outputs of this integrated system are electricity, cooling and hydrogen. By performing a parametric study, the effects of design parameters of PTC, modified ORC and PEM electrolyzer on hydrogen production is evaluated. According to the analysis results, solar radiation is one of the most important factor affecting system exergy efficiency and hydrogen production rate. As solar radiation increases from 400?W/m2 to 1000?W/m2, exergy efficiency of the system increases 58%–64% and hydrogen production rate increases from 0.1016?kg/h to 0.1028?kg/h.  相似文献   

2.
In today, the basic necessity for the economic and social development of countries is to have a cheap, reliable, sustainable, and environmentally friendly energy source. For this reason, renewable energy sources stand out as the most important key. Solar energy-based multi-energy generation systems are one of the most important options among the current scenarios to prevent global warming. In this presented study, electricity and hydrogen production from a solar collector with medium temperature density is investigated. In this system, 34 pipes evacuated tube solar collector (ETSC) is used for thermal energy generation, organic Rankine cycle (ORC) for electricity generation, and Proton exchanger membrane electrolyzer (PEMe) for hydrogen production. In addition, the energy and exergy efficiencies of the whole system calculated as 51.82% and 16.30%, respectively. Moreover, the amount of hydrogen obtained in PEM is measured as 0.00527 kg/s.  相似文献   

3.
The importance of renewable energy compared to fossil fuels is increasing due to growing energy demand and environmental challenges. Multi-generation systems use one or more energy sources and produce several useful outputs. The present study aims at investigating and comparing solar energy based multi-generation systems with and without once-through MSF desalination unit from the thermodynamic point of view. Firstly, hydrogen, electricity, and hot water for space heating and domestic usage are produced using the system, which consists of a parabolic trough collector, an organic Rankine cycle (ORC) and a PEM electrolyzer and heat exchanger as sub-systems. The performance of the entire system is evaluated from the energetic and exergetic points of view. Various parameters affecting hydrogen production rate and efficiency values are also investigated with the thermodynamic model implemented in the Engineering Equation Solver (EES) package. The system can produce hydrogen at a mass flow rate of 20.39 kg/day. The results of the study show that the energy and exergy efficiency values of the ORC are calculated to be 16.80% and 40% while those for the overall system are determined to be 78% and 25.50%, respectively. Secondly, once-through MSF desalination unit is integrated to the system between ORC evaporator and heat exchanger producing domestic hot water in the solar cycle in order not to affect hydrogen production rate while thermodynamic values are compared. Fresh water production capacity of the system is calculated to be at a volumetric flow rate of 5.74 m3/day with 10 stages.  相似文献   

4.
The detailed thermodynamic evaluation for combined system assisted on solar energy for poly-generation are studied in this paper. This poly-generation cycle is operated by the concentrating solar radiation by using the parabolic dish solar collector series. The beneficial exits of this integrated plant are the electricity, fresh-water, hot-water, heating-cooling, and hydrogen while there are different heat energy recovery processes within the plant for development performance. A Rankine cycle with three turbines is employed for electricity production. In addition to that, the desalination aim is performed by utilizing the waste heat of electricity production cycle in a membrane distillation unit for fresh-water generation. Also, a PEM electrolyzer sub-component is utilized for hydrogen generation aim in the case of excess power generation. Finally, the hot-water production cycle is performed via the exiting working fluid from the very high-temperature generator of the cooling cycle. Moreover, based on the thermodynamic assessment outputs, the whole energy and exergy efficiencies of 58.43% and 54.18% are computed for the investigated solar plant, respectively.  相似文献   

5.
In this paper, a combined power plant based on the dish collector and biomass gasifier has been designed to produce liquefied hydrogen and beneficial outputs. The proposed solar and biomass energy based combined power system consists of seven different subplants, such as solar power process, biomass gasification plant, gas turbine cycle, hydrogen generation and liquefaction system, Kalina cycle, organic Rankine cycle, and single-effect absorption plant with ejector. The main useful outputs from the combined plant include power, liquid hydrogen, heating-cooling, and hot water. To evaluate the efficiency of integrated solar energy plant, energetic and exergetic effectiveness of both the whole plant and the sub-plants are performed. For this solar and biomass gasification based combined plant, the generation rates for useful outputs covering the total electricity, cooling, heating and hydrogen, and hot water are obtained as nearly 3.9 MW, 6584 kW, 4206 kW, and 0.087 kg/s in the base design situations. The energy and exergy performances of the whole system are calculated as 51.93% and 47.14%. Also, the functional exergy of the whole system is calculated as 9.18% for the base working parameters. In addition to calculating thermodynamic efficiencies, a parametric plant is conducted to examine the impacts of reference temperature, solar radiation intensity, gasifier temperature, combustion temperature, compression ratio of Brayton cycle, inlet temperature of separator 2, organic Rankine cycle turbine and pump input temperature, and gas turbine input temperature on the combined plant performance.  相似文献   

6.
In this study, biogas power production and green hydrogen potential as an energy carrier are evaluated from biomass. Integrating an Organic Rankine Cycle (ORC) to benefit from the waste exhaust gases is considered. The power obtained from the ORC is used to produce hydrogen by water electrolysis, eliminate the H2S generated during the biogas production process and store the excess electricity. Thermodynamic and thermoeconomic analyses and optimization of the designed Combined Heat and Power (CHP) system for this purpose have been performed. The proposed study contains originality about the sustainability and efficiency of renewable energy resources. System design and analysis are performed with Engineering Equation Solver (EES) and Aspen Plus software. According to the results of thermodynamic analysis, the energy and exergy efficiency of the existing power plant is 28.69% and 25.15%. The new integrated system's energy, exergy efficiencies, and power capacity are calculated as 41.55%, 36.42%, and 5792 kW. The total hydrogen production from the system is 0.12412 kg/s. According to the results of the thermoeconomic analysis, the unit cost of the electricity produced in the existing power plant is 0.04323 $/kWh. The cost of electricity and hydrogen produced in the new proposed system is determined as 0.03922 $/kWh and 0.181 $/kg H2, respectively.  相似文献   

7.
Today, to preserve fossil resources, mankind has to search for new ways to respond to its ever-increasing energy needs. In this study, a hybrid system of energy and the use of a parabolic trough solar collector to attract solar radiation was investigated to produce clean electricity, cooling, and hydrogen from thermodynamic and economic aspects. The designed system consisted of a parabolic trough solar collector, organic Rankine cycle, lithium-bromide absorption refrigeration cycle, and proton exchange membrane electrolysis system. The evaporator input temperature, turbine inlet temperature, solar radiation intensity, mass flow rate of collector and parabolic trough collector surface area were set as decision variables and the effect of these parameters on system performance and system exergy loss were investigated. The objective functions of this research were exergy efficiency and cost rate. In order to optimize this system, multi-objective particle swarm optimization algorithm was employed. Optimization results with particle swarm optimization indicated that the best rate of exergy efficiency is 3.12% and the system cost rate is 16.367 US$ per hour, at the same time. The system is capable of producing 15.385 kW power, 0.189 kg/day hydrogen and 56.145 kW cooling in its optimum condition. The results of sensitivity analysis showed that increasing mass flow rate at the collector, temperature at the evaporator inlet, and temperature at the turbine inlet have positive effect on the performance of the proposed system.  相似文献   

8.
In the examined paper, a solar and wind energy supported integrated cycle is designed to produce clean power and hydrogen with the basis of a sustainable and environmentally benign. The modeled study mainly comprises of four subsystems; a solar collector cycle which operates with Therminol VP1 working fluid, an organic Rankine cycle which runs with R744 fluid, a wind turbine as well as hydrogen generation and compression unit. The main target of this work is to investigate a thermodynamic evaluation of the integrated system based on the 1st and 2 nd laws of thermodynamics. Energetic and exergetic efficiencies, hydrogen and electricity generation rates, and irreversibility for the planned cycle and subsystems are investigated according to different parameters, for example, solar radiation flux, reference temperature, and wind speed. The obtained results demonstration that the whole energy and exergy performances of the modeled plant are 0.21 and 0.16. Additionally, the hydrogen generation rate is found as 0.001457 kg/s, and the highest irreversibility rate is shown in the heat exchanger subcomponents. Also, the net power production rate found to be 195.9 kW and 326.5 kW, respectively, with organic Rankine cycle and wind turbine. The final consequences obtained from this work show that the examined plant is an environmentally friendly option, which in terms of the system's performance and viable, for electrical power and hydrogen production using renewable energy sources.  相似文献   

9.
碳捕集与封存(CCS)技术能有效捕获燃煤电厂排放的CO2但再生能耗大且效率低。为提高燃煤电厂能源利用效率,提出集成有机朗肯循环(ORC)与CCS的太阳能-燃煤发电系统,利用热力学、火用和经济性分析模型对集成系统进行参数敏感性分析。基于外部燃料火用矩阵模型,分析再沸器所需热量中CO2压缩过程和太阳能集热器的热量占比及集成ORC系统对外部燃料火用贡献度的影响。研究表明:当热源比θ=0.4时的集成系统热经济性能最优且具有较合理的不可逆性;集成ORC系统后锅炉燃煤火用、一、二次再热燃煤火用对系统产品的贡献度均有所提高;随着θ增加,锅炉燃煤火用和一、二次再热燃煤火用对碳捕集系统产品的贡献度逐渐降低;压缩余热火用和太阳能火用的贡献度逐渐增加。  相似文献   

10.
A hybrid proton exchange membrane fuel cell (PEMFC) multi-generation system model integrated with solar-assisted methane cracking is established. The whole system mainly consists of a disc type solar Collector, PEMFC, Organic Rankine cycle (ORC). Methane cracking by solar energy to generate hydrogen, which provides both power and heat. The waste heat and hydrogen generated during the reaction are efficiently utilized to generate electricity power through ORC and PEMFC. The mapping relationships between thermodynamic parameters (collector temperature and separation ratio) and economic factors (methane and carbon price) on the hybrid system performance are investigated. The greenhouse gas (GHG) emission reductions and levelized cost of energy (LCOE) are applied to environmental and economic performance evaluation. The results indicate that the exergy utilization factor (EXUF) and energy efficiency of the novel system can reach 21.9% and 34.6%, respectively. The solar-chemical energy conversion efficiency reaches 40.3%. The LCOE is 0.0733 $/kWh when the carbon price is 0.725 $/kg. After operation period, the GHG emission reduction and recovered carbon can reach 4 × 107 g and 14,556 kg, respectively. This novel hybrid system provides a new pathway for the efficient utilization of solar and methane resources and promotes the popularization of PEMFC in zero energy building.  相似文献   

11.
As a renewable source, solar energy has received more and more attention in recent years. Solar energy can readily provide heat efficiently within the temperature range of 70–100°C. For the utilization of this energy source, a cascading cycle was designed and was discussed. An organic Rankine cycle (ORC) and an adsorption refrigeration cycle were combined to provide the first- and second-stage energy conversion cycle, respectively. In the analysis, R600 was used as the working fluid for the ORC and a silica gel–water working pair was analyzed for the adsorption refrigeration cycle. The energy efficiency for electrical generation and refrigeration, as well as the exergy efficiency of the cascading cycle, was assessed. For an environmental temperature of 30°C and a refrigeration temperature of 12°C, the results showed that typically 1 kW of electricity and 6.3 kW of refrigeration could be generated from approximately 15 kW heating power. The electricity generation efficiency was between 0.1 and 0.15, while the refrigeration coefficient of performance was approximately 0.8. The exergy efficiency was found to be between 0.84 and 0.89 and between 0.32 and 0.46 for the single ORC and adsorption refrigeration cycle, respectively. The overall exergy efficiency was between 0.56 and 0.74.  相似文献   

12.
A solar transcritical CO2 power cycle for hydrogen production is studied in this paper. Liquefied Natural Gas (LNG) is utilized to condense the CO2. An exergy analysis of the whole process is performed to evaluate the effects of the key parameters, including the boiler inlet temperature, the turbine inlet temperature, the turbine inlet pressure and the condensation temperature, on the system power outputs and to guide the exergy efficiency improvement. In addition, parameter optimization is conducted via Particle Swarm Optimization to maximize the exergy efficiency of hydrogen production. The exergy analysis indicates that both the solar and LNG equally provide exergy to the CO2 power system. The largest amount of exergy losses occurs in the solar collector and the condenser due to the great temperature differences during the heat transfer process. The exergy loss in condenser could be greatly reduced by increasing the LNG temperature at the inlet of the condenser. There exists an optimum turbine inlet pressure for achieving the maximum exergy efficiency. With the optimized turbine inlet pressure and other parameters, the system is able to provide 11.52 kW of cold exergy and 2.1 L/s of hydrogen. And the exergy efficiency of hydrogen production could reach 12.38%.  相似文献   

13.
Renewable energy-based hydrogen production plants can offer potential solutions to both ensuring sustainability in energy generation systems and designing environmentally friendly systems. In this combined work, a novel solar energy supported plant is proposed that can generate hydrogen, electricity, heating, cooling and hot water. With the suggested integrated plant, the potential of solar energy usage is increased for energy generation systems. The modeled integrated system generally consists of the solar power cycle, solid oxide fuel cell plant, gas turbine process, supercritical power plant, organic Rankine cycle, cooling cycle, hydrogen production and liquefaction plant, and hot water production sub-system. To conduct a comprehensive thermodynamic performance analysis of the suggested plant, the combined plant is modeled according to thermodynamic equilibrium equations. A performance assessment is also conducted to evaluate the impact of several plant indicators on performance characteristics of integrated system and its sub-parts. Hydrogen production rate in the suggested plant according to the performance analysis performed is realized as 0.0642 kg/s. While maximum exergy destruction rate is seen in the solar power plant with 8279 kW, the cooling plant has the lowest exergy destruction rate as 1098 kW. Also, the highest power generation is obtained from gas turbine cycle with 7053 kW. In addition, energetic and exergetic efficiencies of solar power based combined cycle are found as 56.48% and 54.06%, respectively.  相似文献   

14.
In this study, power and hydrogen production performance of an integrated system is investigated. The system consists of an organic Rankine cycle (ORC), parabolic trough solar collectors (PTSCs) having a surface area of 545 m2, middle-grade geothermal source (MGGS), cooling tower and proton exchange membrane (PEM). The final product of this system is hydrogen that produced via PEM. For this purpose, the fluid temperature of the geothermal source is upgraded by the solar collectors to drive the ORC. To improve the electricity generation efficiency, four working fluids namely n-butane, n-pentane, n-hexane, and cyclohexane are tried in the ORC. The mass flow rate of each working fluid is set as 0.1, 0.2, 0.3, 0.4 kg/s and calculations are made for 16 different situations (four types of working fluids and four different mass flow rates for each). As a result, n-butane with a mass flow rate of 0.4 kg/s is found to be the best option. The average electricity generation is 66.02 kW between the hours of 1100-1300. The total hydrogen production is 9807.1 g for a day. The energy and exergy efficiency is calculated to be 5.85% and 8.27%, respectively.  相似文献   

15.
In this work, a unified renewable energy system has designed to assess the electricity and hydrogen production. This system consists of the evacuated tube solar collectors (ETSCs) which have the total surface area of 300 m2, a salt gradient solar pond (SGSP) which has the surface area of 217 m2, an Organic Rankine Cycle (ORC) and an electrolysis system. The stored heat in the heat storage zone (HSZ) transferred to the input water of the ETSCs by means of an exchanger and thereby ETSCs increase the temperature of preheated water to higher level as much as possible that primarily affects the performance of the ORC. The balance equations of the designed system were written and analyzed by utilizing the Engineering Equations Solver (EES) software. Hence, the energy and exergy efficiencies of the overall system were calculated as to be 5.92% and 18.21%, respectively. It was also found that hydrogen generation of the system can reach up to ratio 3204 g/day.  相似文献   

16.
The performance analysis of a novel multi-generation (MG) system that is developed for electricity, cooling, hot water and hydrogen production is presented in this study. MG systems in literature are predominantly built on a gas cycle, integrated with other thermodynamic cycles. The aim of this study is to achieve better thermodynamic (energy and exergy) performance using a MG system (without a gas cycle) that produces hydrogen. A proton exchange membrane (PEM) utilizes some of the electricity generated by the MG system to produce hydrogen. Two Rankine cycles with regeneration and reheat principles are used in the MG configuration. Double effect and single effect absorption cycles are also used to produce cooling. The electricity, hot water, cooling effect, and hydrogen production from the multi-generation are 1027 kW, 188.5 kW, 11.23 kg/s and 0.9785 kg/h respectively. An overall energy and exergy efficiency of 71.6% and 24.5% respectively is achieved considering the solar parabolic trough collector (PTC) input and this can increase to 93.3% and 31.9% if the input source is 100% efficient. The greenhouse gas emission reduction of this MG system is also analyzed.  相似文献   

17.
A hydrogen production method is proposed, which utilizes solar energy powered thermodynamic cycle using supercritical carbon dioxide (CO2) as working fluid for the combined production of hydrogen and thermal energy. The proposed system consists of evacuated solar collectors, power generating turbine, water electrolysis, heat recovery system, and feed pump. In the present study, an experimental prototype has been designed and constructed. The performance of the cycle is tested experimentally under different weather conditions. CO2 is efficiently converted into supercritical state in the collector, the CO2 temperature reaches about 190 °C in summer days, and even in winter days it can reach about 80 °C. Such a high-temperature realizes the combined production of electricity and thermal energy. Different from the electrochemical hydrogen production via solar battery-based water splitting on hand, which requires the use of solar batteries with high energy requirements, the generated electricity in the supercritical cycle can be directly used to produce hydrogen gas from water. The amount of hydrogen gas produced by using the electricity generated in the supercritical cycle is about 1035 g per day using an evacuated solar collector of 100.0 m2 for per family house in summer conditions, and it is about 568.0 g even in winter days. Additionally, the estimated heat recovery efficiency is about 0.62. Such a high efficiency is sufficient to illustrate the cycle performance.  相似文献   

18.
Hydrogen production using thermal energy, derived from nuclear reactor, can achieve large-scale hydrogen production and solve various energy problems. The concept of hydrogen and electricity cogeneration can realize the cascade and efficient utilization of high-temperature heat derive for very high temperature gas-cooled reactors (VHTRs). High-quality heat is used for the high-temperature processes of hydrogen production, and low-quality heat is used for the low-temperature processes of hydrogen production and power generation. In this study, two hydrogen and electricity cogeneration schemes (S1 and S2), based on the iodine-sulfur process, were proposed for a VHTR with the reactor outlet temperature of 950 °C. The thermodynamic analysis model was established for the hydrogen and electricity cogeneration. The energy and exergy analysis were conducted on two cogeneration systems. The energy analysis can reflect the overall performance of the systems, and the exergy analysis can reveal the weak parts of the systems. The analysis results show that the overall hydrogen and electricity efficiency of S1 is higher than that of S2, which are 43.6% and 39.2% at the hydrogen production rate of 100 mol/s, respectively. The steam generators is the components with the highest exergy loss coefficient, which are the key components for improving the system performance. This study presents a theoretical foundation for the subsequent optimization of hydrogen and electricity cogeneration coupled with VHTRs.  相似文献   

19.
Hydrogen is an essential component of power-to-gas technologies that are needed for a complete transition to renewable energy systems. Although hydrogen has zero GHG emissions at the end-use point, its production could become an issue if non-renewable, and pollutant energy and material resources are used in this step. Therefore, a crucial step for the fully developed hydrogen economy is to find alternative hydrogen production methods that are clean, efficient, affordable, and reliable. With this motivation, in this study, an integrated and continuous type of hydrogen production system is designed, developed, and investigated. This system has three components. There is a solar spectral splitting device (Unit I), which splits the incoming solar energy into two parts. Photons with longer wavelength is sent to the photovoltaic thermal hybrid solar collector, PV/T, (Unit II) and used for combined heat and power generation. Then the remaining part is transferred to the novel hybrid photoelectrochemical-chloralkali reactor (Unit III) for simultaneous H2, Cl2, and NaOH production. This system has only one energy input, which is the solar irradiation and five outputs, namely H2, Cl2, NaOH, heat, and electricity. Unlike most of the studies in the literature, this system does not use only PV or only a photoelectrochemical reactor. With this approach, solar energy utilization is maximized, and the wasted portion is minimized. By selecting PV/T rather than PV, the performance of the panels is maximized because recovering the by-product heat as a system output in addition to electricity, and the PV/T has less waste and higher efficiency. The present reactor does not use any additional electron donors, so the wastewater discharge is only depleted NaCl solution, which makes the system significantly cleaner than the ones available in the literature. The specific aim of this study is to demonstrate the optimum operating parameters to reach the maximum achievable production rates and efficiencies while keeping the exergy destruction as little as possible. In this study, there are four case studies, and in each case study, one decision variable is optimized to get the desired performance results. Within the selected operating parameter range, all performance criteria (except exergy destruction) are normalized and ranked for proper comparison. The maximum production rates and efficiencies with the least possible exergy destruction are observed at the operating temperature of 30 °C. At 30 °C, 4.18 g/h H2, 127.55 g/h Cl2, 151 W electricity, and 716 W heat are produced with an exergy destruction rate of 95.74 W and 78% and 30% energy and exergy efficiencies, respectively.  相似文献   

20.
In this study, exergoeconomic and environmental impact analyses, through energy, exergy, and sustainability assessment methods, are performed to investigate a hybrid version renewable energy (including wind and solar) based hydrogen and electricity production system. The dead state temperatures considered here are 10 °C, 20 °C and 30 °C to undertake a parametric study. An electrolyzer and a metal hydride tank are used for hydrogen production and hydrogen storage, respectively. Also, the Proton Exchange Membrane Fuel Cell (PEMFC) and battery options are utilized for electricity generation and storage, respectively. As a result, the energy and exergy efficiencies and the sustainability index for the wind turbine are found to be higher than the ones for solar photovoltaic (PV) system. Also, the overall exergy efficiency of the system is found to be higher than the corresponding overall energy efficiency. Furthermore, for this system, it can be concluded that wind turbine with 60 gCO2/month is more environmentally-benign than the solar PV system with 75 gCO2/month. Finally, the total exergoeconomic parameter is found to be 0.26 W/$, when the energy loss is considered, while it is 0.41 W/$, when the total of exergy loss and destruction rates are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号