首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-energy complementary distributed energy system integrated with renewable energy is at the forefront of energy sustainable development and is an important way to achieve energy conservation and emission reduction. A comparative analysis of solid oxide fuel cell (SOFC)-micro gas turbine (MGT)-combined cooling, heating and power (CCHP) systems coupled with two solar methane steam reforming processes is presented in terms of energy, exergy, environmental and economic performances in this paper. The first is to couple with the traditional solar methane steam reforming process. Then the produced hydrogen-rich syngas is directly sent into the SOFC anode to produce electricity. The second is to couple with the medium-temperature solar methane membrane separation and reforming process. The produced pure hydrogen enters the SOFC anode to generate electricity, and the remaining small amount of fuel gas enters the afterburner to increase the exhaust gas enthalpy. Both systems transfer the low-grade solar energy to high-grade hydrogen, and then orderly release energy in the systems. The research results show that the solar thermochemical efficiency, energy efficiency and exergy efficiency of the second system reach 52.20%, 77.97% and 57.29%, respectively, 19.05%, 7.51% and 3.63% higher than those of the first system, respectively. Exergy analysis results indicate that both the solar heat collection process and the SOFC electrochemical process have larger exergy destruction. The levelized cost of products of the first system is about 0.0735$/h that is lower than that of the second system. And these two new systems have less environmental impact, with specific CO2 emissions of 236.98 g/kWh and 249.89 g/kWh, respectively.  相似文献   

2.
The paper presents a configuration of mini CHP with the methane reformer and planar solid oxide fuel cell (SOFC) stacks. This mini CHP may produce electricity and superheated steam as well as preheat air and methane for the reformer along with cathode air used in the SOFC stack as an oxidant. Moreover, the mathematical model for this power plant has been created. The thermochemical reactor with impeded fluidized bed for autothermal steam reforming of methane (reformer) considered as the basis for the synthesis gas (syngas) production to fuel SOFC stacks has been studied experimentally as well. A fraction of conversion products has been oxidized by the air fed to the upper region of the impeded fluidized bed in order to carry out the endothermic methane steam reforming in a 1:3 ratio as well as to preheat products of these reactions. Studies have shown that syngas containing 55% of hydrogen could be produced by this reactor. Basic dimensions of the reactor as well as flow rates of air, water and methane for the conversion of methane have been adjusted through mathematical modelling.The paper provides heat balances for the reformer, SOFC stack and waste heat boiler (WHB) intended for generating superheated water steam along with preheating air and methane for the reformer as well as the preheated cathode air. The balances have formed the basis for calculating the following values: the useful product fraction in the reformer; fraction of hydrogen oxidized at SOFC anode; gross electric efficiency; anode temperature; exothermic effect of syngas hydrogen oxidation by air oxygen; excess entropy along with the Gibbs free energy change at standard conditions; electromotive force (EMF) of the fuel cell; specific flow rate of the equivalent fuel for producing electric and heat energy. Calculations have shown that the temperature of hydrogen oxidation products at SOFC anode is 850 °C; gross electric efficiency is 61.0%; EMF of one fuel cell is 0.985 V; fraction of hydrogen oxidized at SOFC anode is 64.6%; specific flow rate of the equivalent fuel for producing electric energy is 0.16 kg of eq.f./(kW·h) while that for heat generation amounts to 44.7 kg of eq.f./(GJ). All specific parameters are in agreement with the results of other studies.  相似文献   

3.
This study represents the results of the analysis and optimization of an integrated system for cogenerating electricity and freshwater. This setup consists of a Solid Oxide Fuel cell (SOFC) for producing electricity. Unburned fuel of the SOFC is burned in the afterburner to increase the temperature of the SOFC's outlet gasses and operate a Gas turbine (GT) to produce additional power and operate the air compressor. At the bottom of this cycle, a combined setup of a Multi-Effect Desalination (MED) and Reverse Osmosis (RO) is considered to produce freshwater from the unused heat capacity of the GT's exhaust gasses. Also, a Stirling engine is used in the fuel supply line to increase the fuel's temperature. Using LNG and the Stirling engine will replace the fuel compressor with a pump which increases the system performance and eliminates the need for the expansion valve. To study the system performance a mathematical model is developed in Engineering Equation Solver (EES) program. Then, the system's simulated data from the EES has been sent to MATLAB to promote the best operating condition based on the optimization criteria. An energetic, exergetic, economic, and environmental analysis has been performed and a Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to achieve the goal. The two-objective optimization is performed to maximize the exergetic efficiency of the proposed system while minimizing the system's total cost of production. This cost is a weighted distribution of the Levelized Cost of Electricity (LCOE) and Levelized Cost of freshwater (LCOW). The results showed that the exergetic and energetic efficiencies of the system can reach 73.5% and 69.06% at the optimum point. The total electricity production of the system is 99 MW. The production cost is 11.71 Cents/kWh, of which 1.04 Cents/kWh is emission-related and environmental taxes. The freshwater production rate is 42.44 kg/s which costs 4.38 USD/m3.  相似文献   

4.
Wind energy systems have been considered for Canada's remote communities in order to reduce their costs and dependence on diesel fuel to generate electricity. Given the high capital costs, low-penetration wind–diesel systems have been typically found not to be economic. High-penetration wind–diesel systems have the benefit of increased economies of scale, and displacing significant amounts of diesel fuel, but have the disadvantage of not being able to capture all of the electricity that is generated when the wind turbines operate at rated capacity.Two representative models of typical remote Canadian communities were created using HOMER, an NREL micro-power simulator to model how a generic energy storage system could help improve the economics of a high-penetration wind–diesel system. Key variables that affect the optimum system are average annual wind speed, cost of diesel fuel, installed cost of storage and a storage systems overall efficiency. At an avoided cost of diesel fuel of 0.30 $Cdn/kWh and current installed costs, wind generators are suitable in remote Canadian communities only when an average annual wind speed of at least 6.0 m/s is present. Wind energy storage systems become viable to consider when average annual wind speeds approach 7.0 m/s, if the installed cost of the storage system is less than 1000 $Cdn/kW and it is capable of achieving at least a 75% overall energy conversion efficiency. In such cases, energy storage system can enable an additional 50% of electricity from wind turbines to be delivered.  相似文献   

5.
This paper presents the economic assessment of novel refueling stations, in which through advanced and high efficiency technologies, the polygeneration of more energy services like hydrogen, electricity and heat is carried out on-site.The architecture of these polygeneration plants is realized with a modular structure, organized in more sections.The primary energy source is ammonia that represents an interesting fuel for producing more energy streams. The ammonia feeds directly the SOFC that is able to co-generate simultaneously electricity and hydrogen by coupling a high efficiency energy system with hydrogen chemical storage.Two system configurations have been proposed considering different design concepts: in the first case (Concept_1) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized also for self-sustaining the plant electric power consumption, while in the second one (Concept_2) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized for self-sustaining the plant electric power consumption and for generating 50 kW for the DC fast charging.The economic analysis has been carried out in the current and target scenarios, by evaluating, the levelized cost of hydrogen (LCOH), the levelized cost of electricity (LCOE), the Profitability Index (PI), Internal rate of Return (IRR) and the Discounted Payback Period (DPP).Results have highlighted that the values of the LCOH, for the proposed configurations and economic scenarios, are in the range 6–10 €/kg and the values of the LCOE range from 0.447 €/kWh to 0.242 €/kWh.In terms of PI and IRR, the best performance is achieved in the Concept_1 for the current scenario (1.89 and 8.0%, respectively). On the contrary, in the target scenario, thanks to a drastic costs reduction the co-production of hydrogen and electricity as useful outputs, becomes the best choice from all economic indexes and parameters considered.  相似文献   

6.
Bio-waste embeds an extraordinary renewable potential, and it becomes a source of energy savings when transformed into a valuable resource, like biogas. Cogeneration (CHP) from biogas employing high-temperature Solid Oxide Fuel Cells (SOFCs) scores a high sustainability level, thanks to improved environmental and energy performances. The synergy between the niche market of small/micro biogas producers and SOFCs might act as a springboard to open market opportunities for both SOFC commercialization and business upgrade of small farms. However, local regulations, waste management, renewable energy subsidies and, above all, availability of eligible sites, determine real chances for on-the-ground implementation.Through a detailed analysis of the application scenario, this research aims at investigating opportunities for the experimentation of SOFC–CHP in small biogas plants and identifying the possible bottlenecks for future deployment. When it becomes relevant, energy conversion of livestock (especially cattle and swine) and agriculture waste requires SOFC modules from 10 kWe to 35 kWe. This is in line with the current status of SOFC suppliers. Moreover, considering the fuel cell market roll-out, the average levelized cost of electricity is expected to decrease from 0.387 €/kWh to 0.115 €/kWh, when electricity is produced from livestock waste available on-site.  相似文献   

7.
Hydrogen is the most abundant element in the world and produces only water vapor as a result of chemical reaction that occurred in fuel cells. Therefore, fuel cell electric vehicles, which use hydrogen as fuel, continue its growing trend in the sector. In this study, an energy distribution comparison is carried out between fuel cell electric vehicle and fuel cell hybrid electric vehicle. Hybridization of fuel cell electric vehicle is designed by equipped a traction battery (15 kW). Modeled vehicles were prepared under AVL Cruise program with similar chassis and same fuel cell stacks for regular determining process. Numerical analyses were presented and graphed with instantaneous results in terms of sankey diagrams with a comparison task. WLTP driving cycle is selected for both vehicles and energy input/output values given with detailed analyses. The average consumption results of electric and hydrogen usage is found out as 4.07 kWh and 1.125 kg/100 km respectively for fuel cell electric vehicle. On the other hand, fuel cell hybrid electric vehicle’s average consumption results figured out as 3.701 kWh for electric and 0.701 kg/100 km for hydrogen consumption. As a result of this study, fuel cell hybrid electric vehicle was obtained better results rather than fuel cell electric vehicle according to energy and hydrogen consumption with 8% and 32%, respectively.  相似文献   

8.
Solar/diesel/battery hybrid power systems have been modelled for the electrification of typical rural households and schools in remote areas of the far north province of Cameroon. The hourly solar radiation received by latitude-titled and south-facing modules was computed from hourly global horizontal solar radiation of Garoua using Hay's anisotropic model. Using the solar radiation computed for latitude-tilted and south-facing modules, the average daytime temperatures for Garoua and parameters of selected solar modules, the monthly energy production of the solar modules was computed. It was found that BP solar modules with rated power in the range 50–180 Wp produced energy in the range 78.5–315.2 kWh/yr. The energy produced by the solar modules was used to model solar/diesel/battery hybrid power systems that could meet the energy demand of typical rural households in the range 70–300 kWh/yr. It was also found that a solar/diesel/battery hybrid power system comprising a 1440 Wp solar array and a 5 kW single-phase generator operating at a load factor of 70%, required only 136 generator h/yr to supply 2585 kWh/yr or 7 kWh/day to a typical secondary school. The renewable energy fraction obtained in all the systems evaluated was in the range 83–100%. These results show that there is a possibility to increase the access rate to electricity in the far north province without recourse to grid extension or more thermal plants in the northern grid or more independent diesel plants supplying power to remote areas of the province.  相似文献   

9.
The influence of the type of fuel such as hydrogen, methane, motor diesel fuel, ethanol, motor gasoline and methanol on the fuel utilization ratio, the specific consumption per unit of electrical and heat power generated, the efficiency of the catalytic burner, the solid oxide fuel cell battery and the electrochemical generator has been studied. It has been shown that hydrogen is the best fuel in terms of energy indicators, and methanol is the worst one. For hydrogen, the fuel utilization ratio and specific fuel consumption for the production of electrical power and heat power supplied to heat networks are equal to 1; 0.122 kg r.f./kW·h and 34 kg r.f./GJ, respectively, while for methanol these indicators are 0.359; 0.275 kg r.f./kW·h and 83.7 kg r.f./GJ, respectively. For other types of fuels studied the energy indicators lie between the specified values.  相似文献   

10.
In this paper, a conceptual hybrid biomass gasification system is developed to produce hydrogen and is exergoeconomically analyzed. The system is based on steam biomass gasification with the lumped solid oxide fuel cell (SOFC) and solid oxide electrolyser cell (SOEC) subsystem as the core components. The gasifier gasifies sawdust in a steam medium and operates at a temperature range of 1023-1423 K and near atmospheric pressure. The analysis is conducted for a specific steam biomass ratio of 0.8 kmol-steam/kmol-biomass. The gasification process is assumed to be self-thermally standing. The pressurized SOFC and SOEC are of planar types and operate at 1000 K and 1.2 bar. The system can produce multi-outputs, such as hydrogen (with a production capacity range of 21.8-25.2 kgh−1), power and heat. The internal hydrogen consumption in the lumped SOFC-SOEC subsystem increases from 8.1 to 8.6 kg/h. The SOFC performs an efficiency of 50.3% and utilizes the hydrogen produced from the steam that decomposes in the SOEC. The exergoeconomic analysis is performed to investigate and describe the exergetic and economic interactions between the system components through calculations of the unit exergy cost of the process streams. It obtains a set of cost balance equations belonging to an exergy flow with material streams to and from the components which constitute the system. Solving the developed cost balance equations provides the cost values of the exergy streams. For the gasification temperature range and the electricity cost of 0.1046 $/kWh considered, the unit exergy cost of hydrogen ranges from 0.258 to 0.211 $/kWh.  相似文献   

11.
The utilization of renewable gaseous fuels in the diesel engine has gained significant interest in recent years due to its clean-burning nature and higher availability. In this study, hydrogen-rich reformed biogas was used as a gaseous fuel in a common rail diesel engine with diesel as pilot fuel. The hydrogen-rich reformed gas was synthesized through dry-oxidative reforming. The experimentations were performed in the load range from 6 to 24 N m with two different flow rates of gaseous fuel (0.5 and 1.5 kg/h) at a constant speed of 1800 RPM. The effects on engine performance parameters (brake thermal efficiency, brake specific energy consumption, and brake specific diesel consumption), combustion parameters (rate of pressure rise and maximum heat release rate) and emission parameters (Unburnt hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide) were assessed. The induction of gaseous fuel led to an increase in brake thermal efficiency by 10.5%, reduction in brake specific energy consumption by 13.6%, and a reduction of 26.4% in brake specific diesel consumption with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load. The HC, NOX and CO2 emissions were reduced by 18.2%, 7.4% and 1.4% with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load due to lower availability of carbon content in the combustible mixture. The utilization of renewable fuel like hydrogen-rich reformed biogas has great potential for overcoming the issue related to both biogas and hydrogen in diesel engines. Moreover, the higher diesel substitution also demonstrates the potential for cost-saving and fossil fuel conservation.  相似文献   

12.
This study aims to provide a comprehensive environmental life cycle assessment of heat and power production through solid oxide fuel cells (SOFCs) fueled by various chemical feeds namely; natural gas, hydrogen, ammonia and methanol. The life cycle assessment (LCA) includes the complete phases from raw material extraction or chemical fuel synthesis to consumption in the electrochemical reaction as a cradle-to-grave approach. The LCA study is performed using GaBi software, where the selected impact assessment methodology is ReCiPe 1.08. The selected environmental impact categories are climate change, fossil depletion, human toxicity, water depletion, particulate matter formation, and photochemical oxidant formation. The production pathways of the feed gases are selected based on the mature technologies as well as emerging water electrolysis via wind electricity. Natural gas is extracted from the wells and processed in the processing plant to be fed to SOFC. Hydrogen is generated by steam methane reforming method using the natural gas in the plant. Methanol is also produced by steam methane reforming and methanol synthesis reaction. Ammonia is synthesized using the hydrogen obtained from steam methane reforming and combined with nitrogen from air in a Haber-Bosch plant. Both hydrogen and ammonia are also produced via wind energy-driven decentralized electrolysis in order to emphasize the cleaner fuel production. The results of this study show that feeding SOFC systems with carbon-free fuels eliminates the greenhouse gas emissions during operation, however additional steps required for natural gas to hydrogen, ammonia and methanol conversion, make the complete process more environmentally problematic. However, if hydrogen and ammonia are produced from renewable sources such as wind-based electricity, the environmental impacts reduce significantly, yielding about 0.05 and 0.16 kg CO2 eq., respectively, per kWh electricity generation from SOFC.  相似文献   

13.
A novel SOFC hybrid system is proposed and evaluated relative to its thermodynamic efficiency and economy. The proposed system combines an SOFC stack with an HCCI-type internal combustion engine; the HCCI engine replaces a conventional combustor, simultaneously burns the anode off-gas, and produces additional power. To calculate the efficiency of the suggested system, each component and the overall system have been thermodynamically modeled. The levelized cost of electricity (LCOE) has been calculated and economically assessed. For quantitative comparison and evaluation, a simple SOFC system and an SOFC/GT hybrid system are designed. Consequently, the proposed hybrid system shows the efficiency 59.5%, which is 7.8% and 0.9% higher efficiency than those of the SOFC simple system and the SOFC/GT hybrid system, respectively. And the system exhibits the LCOE $0.23/kWh, that is 12.9% and 7.6% reduced LCOE compared with the other two reference cases.  相似文献   

14.
The heat generated by a proton exchange membrane fuel cell (PEMFC) is generally removed from the cell by a cooling system. Combining heat energy and electricity in a PEMFC is highly desirable to achieve higher fuel efficiency. This paper describes the design of a new power system that combines the heat energy and electricity in a miniature PEMFC to improve the overall power efficiency in an underwater glider. The system makes use of the available heat energy for navigational power of the underwater glider while the electricity generated by the miniature PEMFC is used for the glider's sensors and control system. Experimental results show that the performance of the thermal engine can be obviously improved due to the high quality heat from the PEMFC compared with the ocean environmental thermal energy. Moreover, the overall fuel efficiency can be increased from 17 to 25% at different electric power levels by harvesting the PEMFC heat energy for an integrated fuel cell and thermal engine system in the underwater glider.  相似文献   

15.
A theoretical study of a solid oxide fuel cell (SOFC) fed by ethanol is presented in this study. The previous studies mostly investigated the performance of ethanol-fuelled fuel cells based on a thermodynamic analysis and neglected the presence of actual losses encountered in a real SOFC operation. Therefore, the real performance of an anode-supported SOFC with direct-internal reforming operation is investigated here using a one-dimensional isothermal model coupled with a detailed electrochemical model for computing ohmic, activation, and concentration overpotentials. Effects of design and operating parameters, i.e., anode thickness, temperature, pressure, and degree of ethanol pre-reforming, on fuel cell performance are analyzed. The simulation results show that when SOFC is operated at the standard conditions (V = 0.65 V, T = 1023 K, and P = 1 atm), the average power density of 0.51 W cm−2 is obtained and the activation overpotentials represent a major loss in the fuel cell, followed by the ohmic and concentration losses. An increase in the thickness of anode decreases fuel cell efficiency due to increased anode concentration overpotential. The performance of the anode-supported SOFC fuelled by ethanol can be improved by either increasing temperature, pressure, degree of pre-reforming of ethanol, and steam to ethanol molar ratio or decreasing the anode thickness and fuel flow rate at inlet. It is suggested that the anode thickness and operating conditions should be carefully determined to optimize fuel cell efficiency and fuel utilization.  相似文献   

16.
In an energy sustainability perspective, the renewables penetration is expected to importantly increase over the next decade, requiring modifications in the current electric system in terms of flexibility and reliability. In this respect, storage systems will play a central role and the production of green hydrogen is seen as a promising solution for both short-term and seasonal storage.In this context, the aim of this paper is the development of a methodology for the optimal design of hybrid storage micro-grids based on renewables and hydrogen and the definition of an optimal management strategy in a perspective of hydrogen employment as seasonal storage. In detail, an optimization code – based on mathematical models for each component and on specifically developed optimization strategies for the management of the components interaction – will be presented and applied to a case study. The code optimizes the sizes of the integrated electrolyzer and fuel cell, based on an objective function that maximizes the storage efficiency. It has been applied to the S.A.P.I.E.N.T.E. micro-grid installed at the ENEA Research Centre near Rome (Italy) – composed of photovoltaic panels, batteries, heat pump and thermal storage systems – obtaining the optimal design of the hydrogen section to be integrated as seasonal storage strategy. Furthermore, a parametric analysis on the battery size has been performed. The application of the developed optimization routine resulted in the introduction of a 3.7 kW electrolyzer and 4 kW fuel cell coupled with 36 kWh of battery capacity, enabling a total hydrogen production of about 87.5 kg (corresponding to 1159 kWh of electricity produced during the thermal year).  相似文献   

17.
Solid oxide fuel cell technology   总被引:1,自引:0,他引:1  
The use of high-temperature solid oxide fuel cell (SOFC) systems is discussed. Such cells show great promise for economical production of electricity and heat in a variety of commercial, industrial cogeneration, and electric utility systems applications. Pioneered by Westinghouse in the 1960s, this technology is based on the ability of stabilized zirconia to operate as a solid electrolyte at elevated temperatures. It is illustrated that the cells readily conduct oxygen ions from an air electrode (cathode) where they are formed, through the zirconia-based electrolyte to a fuel electrode (anode), where they react with fuel-gas CO or H2 or any mixture, e.g., steam-reformed natural gas, and deliver electrons to an external circuit to produce electricity. These fuel cells operate at temperatures near 1000°C and are the basic building blocks for highly efficient combined heat and electric power, or all electric-power generators  相似文献   

18.
Ultra-low sulphur diesel (ULSD) is the preferred fuel for mobile auxiliary power units (APU). The commercial available technologies in the kW-range are combustion engine based gensets, achieving system efficiencies about 20%. Solid oxide fuel cells (SOFC) promise improvements with respect to efficiency and emission, particularly for the low power range. Fuel processing methods i.e., catalytic partial oxidation, autothermal reforming and steam reforming have been demonstrated to operate on diesel with various sulphur contents. The choice of fuel processing method strongly affects the SOFC's system efficiency and power density.This paper investigates the impact of fuel processing methods on the economical potential in SOFC APUs, taking variable and capital cost into account. Autonomous concepts without any external water supply are compared with anode recycle configurations. The cost of electricity is very sensitive on the choice of the O/C ratio and the temperature conditions of the fuel processor. A sensitivity analysis is applied to identify the most cost effective concept for different economic boundary conditions.The favourite concepts are discussed with respect to technical challenges and requirements operating in the presence of sulphur.  相似文献   

19.
The current study deals with the thermodynamic modeling of an innovative integrated plant based on solid oxide fuel cell (SOFC) with liquefied natural gas (LNG) cold energy supply. For the suggested innovative plant the energy, and exergy simulations are fully extended and the plant comprehensively analyzed. According to mathematical simulations of the proposed plant, a MATLAB code has been extended. The results indicate that under considered initial conditions, the efficiencies of SOFC and net power generation calculated 58% and 78%, respectively and the CO2-capture rate is obtained 79 kg/h. This study clearly shows that the integrated system reached high efficiency while having zero emissions. In addition, the efficiencies and net amount of power generation, cooling or heating output and SOFC power generation are discussed in detail as a function of different variables such utilization factor, air/fuel ratio, or SOFC inlet temperature. For enhancing the power production efficiency of SOFC, the net electricity, and CCHP exergy efficiency the plant should run in higher utilization factor and lower air/fuel ration also it's important to approximately set SOFC temperature to its ideal temperature.  相似文献   

20.
Environmental benefits are one of the main motivations encouraging the use of natural gas as fuel for internal combustion engines. In addition to the better impact on pollution, natural gas is available in many areas. In this context, the present work investigates the effect of hydrogen addition to natural gas in dual fuel mode, on combustion characteristics improvement, in relation with engine performance. Various hydrogen fractions (10, 20 and 30 by v%) are examined. Results showed that natural gas enrichment with hydrogen leads in general to an improved gaseous fuel combustion, which corresponds to an enhanced heat release rate during gaseous fuel premixed phase, resulting in an increase in the in-cylinder peak pressure, especially at high engine load (4.1 bar at 70% load). The highest cumulative and rate of heat release correspond to 10% Hydrogen addition. The combustion duration of gaseous fuel combustion phase is reduced for all hydrogen blends. Moreover, this technique resulted in better combustion stability. For all hydrogen test blends, COVIMEP does not exceed 10%. However, no major effect on combustion noise was noticed and the ignition delay was not affected significantly. Regarding performance, an important improvement in energy conversion was obtained with almost all hydrogen blends as a result of improved gaseous fuel combustion. A maximum thermal efficiency of 32.5%, almost similar to the one under diesel operation, and a minimum fuel consumption of 236 g/kWh, are achieved with 10% hydrogen enrichment at 70% engine load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号