首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The B6Be2 and B8Be2 clusters, adopting fascinating inverse sandwich-like geometries, were recently predicted with quantum chemical calculations. Both systems exhibit the high stability and double aromaticity with 4σ/6π or 6σ/6π delocalized electrons. The hydrogen storage of two systems is studied in the present paper. Our calculations show that B6Be2 and B8Be2 clusters have the ultra-high capacity hydrogen storage, each Be site can bound up with seven H2 molecules, corresponding to a gravimetric density of 25.3 wt percentage (wt%) for B6Be2 and 21.1 wt% for B8Be2, respectively, which far exceeds the target (5.5 wt%) proposed by the US department of energy (DOE) in 2017. The average absorption energies of 0.10–0.45 eV/H2 for B6Be2 and 0.11–0.50 eV/H2 for B8Be2 at the wB97XD level suggest that both systems are ideal for reversible hydrogen storage and release. The reversibility of H2 molecules on B6Be2 and B8Be2 complexes are faithfully demonstrated with the Born-Oppenheimer molecular dynamics (BOMD) simulations. The Be-doped boron nanostructure is a promising candidate for ultra-high hydrogen storage materials.  相似文献   

2.
The potential application of pristine Be2N6 monolayer and Li-decorated Be2N6 monolayer for hydrogen storage is researched by using periodic DFT calculations. Based on the obtained results, the Be2N6 monolayer gets adsorb up to seven H2 molecules with an average binding energy of 0.099 eV/H2 which is close to the threshold energy of 0.1 eV required for practical applications. Decoration of the Be2N6 monolayer with lithium atom significantly improves the hydrogen storage ability of the desired monolayer compared to that of the pristine Be2N6 monolayer. This can be attributed to the polarization of H2 molecules induced by the charge transfer from Li atoms to the Be2N6 monolayer. Decoration of Be2N6 monolayer with two lithium atoms gives a promising medium that can hold up to eight H2 molecules with average adsorption energy of 0.198 eV/H2 and hydrogen uptake capacities of 12.12 wt%. The obtained hydrogen uptake capacity of 2Li/Be2N6 monolayer is much higher than the target set by the U.S. Department of Energy (5.5 wt% by 2020). Based on the van't Hoff equation, it is inferred that hydrogen desorption can occur at TD = 254 K for 2Li/Be2N6 (8H2) system which is close to ambient conditions. This is a remarkable result indicating important practical applications of 2Li/Be2N6 medium for hydrogen storage purposes.  相似文献   

3.
In this article, we have explored the hydrogen (H2) storage capacity of the Li doped B clusters LinB14(n = 1–5) using density functional theory (DFT). The geometrical and Bader's topological parameters indicate that the clusters adsorb H2 in the molecular form. The Li atom polarises the H2 molecules for their effective adsorption on the clusters. The LinB14 (n = 1–5) clusters are found to be stable even after H2 adsorption at room temperature. The average adsorption energy is found to be in the range of 0.12–0.14 eV/H2. Among the various clusters, the Li5B14 shows maximum H2 storage capacity (13.89 wt%) at room temperature. The ADMP simulation reveals that within few femtoseconds (fs), the H2 molecules begin to move away from the clusters and within 400 fs most of the H2 molecules moved away from the clusters.  相似文献   

4.
The capacity of hydrogen adsorption of magnesium (Mg) decorated small boron (B) clusters (Mg2Bn; n = 4–14) was studied using density functional theory (DFT). The calculated results indicate that H2 adsorbed in the molecular form. The Bader's topological analysis indicates the presence of closed shell type interaction between clusters and H2 molecules. The clusters are stable even after the adsorption of H2 molecules. The average energy of H2 adsorption is calculated to be in the range of 0.13–0.22 eV/H2. The Mg2B6 cluster shows maximum H2 adsorption (8.10 wt%) at ambient temperature and pressure. Further, we have performed molecular dynamic (MD) simulation at room temperature for each cluster to understand adsorption and desorption of H2 molecules with time. The MD simulation revealed that most of the adsorbed H2 molecules moved away from the clusters within 200 fs. However, one H2 molecule remains attached with the Mg2B11 cluster even after 200 fs.  相似文献   

5.
The effect of light metal ion decoration of the organic linker in metal-organic framework MOF-5 on its hydrogen adsorption with respect to its hydrogen binding energy (ΔB.E.) and gravimetric storage capacity is examined theoretically by employing models of the form MC6H6:nH2 where M = Li+, Na+, Be2+, Mg2+, and Al3+. A systematic investigation of the suitability of DFT functionals for studying such systems is also carried out. Our results show that the interaction energy (ΔE) of the metal ion M with the benzene ring, ΔB.E., and charge transfer (Qtrans) from the metal to benzene ring exhibit the same increasing order: Na+ < Li+ < Mg2+ < Be2+ < Al3+. Organic linker decoration with the above metal ions strengthened H2-MOF-5 interactions relative to its pure state. However, amongst these ions only Mg2+ ion resulted in ΔB.E. magnitudes that were optimal for allowing room temperature hydrogen storage applications of MOF-5. A much higher gravimetric storage capacity (6.15 wt.% H2) is also predicted for Mg2+-decorated MOF-5 as compared to both pure MOF-5 and Li+-decorated MOF-5.  相似文献   

6.
It is well known that the development of dual-purpose materials is more significant and valuable than single-use materials due to the diversity of their use purposes. Based on density functional theory (DFT), the hydrogen evolution/hydrogen storage characteristics of two-dimensional (2D) B7P2 monolayer are systematically studied in this paper, focusing on the key word of clean energy-“hydrogen”. The results show that the B7P2 monolayer can be used as a stable metal-free decorated catalyst for hydrogen evolution reaction (HER), which is renewable and environmentally friendly. The calculated Gibbs free energy (ΔGH1) is 0.06 eV, which is comparable or even better than that of Pt catalyst (ΔGH1 = ?0.09 eV). In addition, we also found that the increase of hydrogen coverage and strain driving (?2%–2%) did not further enhance the HER activity of B7P2 monolayer, showing a poor ΔGH1. In the aspect of hydrogen storage, we have investigated the hydrogen storage performances of alkali-metal (Li, Na and K) doped B7P2. It is found that in the fully loaded case, B7P2Li6 is a promising hydrogen storage material with a 7.5 wt% H2 content and 0.15 eV/H2 average hydrogen adsorption energy (Eave). Moreover, ab initio molecular dynamics (AIMD) calculations show that there is no dynamic barrier for H2 desorption of Li-decorated B7P2 monolayer. In conclusion, our results indicate that the B7P2 monolayer is not only an excellent catalyst for HER, but also a promising hydrogen storage medium.  相似文献   

7.
The demand for clean renewable energy is urgent in current. The hydrogen application is difficult mainly due to the ratively low capacity in the storage medium. In this work, the adsorption and desorption of the hydrogen molecules by the Li atoms decorated B38 cage are studied by the density functional theory. The calculated largest binding energy of one Li atom (2.68 eV and 2.58 eV) is upon the hexagonal hole of the B38 cage, which is much larger than the experimental cohesive energy of bulk Li (1.63 eV). Each Li atom in the outside of the B38 cage can adsorb up to four H2 molecules. The Ead of B38(Li-nH2)4 decreases from the 0.22 eV for n = 1 to the 0.11 eV for n = 4. The B38(Li–4H2)4 structure achieves the 6.85 wt% hydrogen gravimetric density, which is higher than the goal of 5.5 wt% before 2017 set by the United States Department of Energy. The almost the same partial density of states for the fifth H2 molecule as that of the isolated H2 molecule, the longer 4.5 Å distance between the fifth H2 molecule and the Li atom, together with the small NBO charges all reveal the weak electronic field around the Li+, which can interpret the weak H2 adsorption mechanism. Finally, the B38Li4 structure can easily release 9H2 molecules at 373 K known from the molecular dynamic simulation and practically trap about 1.08H2 molecules at 373 K/3 atom condition calculated by the grand partition function. Thus, its reversible practical HGD of B38Li4-14.34H2 is 6.18 wt%, which is almost the same value as the theoretical 6.85 wt% for B38(Li–4H2)4. Our studies will be the strong theory basis for the future application in hydrogen storage material development.  相似文献   

8.
We report a density functional theory calculation dedicated to analyze the behavior of hydrogen adsorption on Yttrium-decorated C48B12. Electron deficient C48B12 is found to promote charge transfer between Y atom and substrate leading to an enhanced local electric field which can significantly improve the hydrogen adsorption. The analysis shows that Y atoms can be individually adsorbed on the pentagonal sites without clustering of the metal atoms, and each Y atom can bind up to six H2. molecules with an average binding energy of −0.46 eV/H2, which is suitable for ambient condition hydrogen storage. The Y atoms are found to trap H2 molecules through well-known “Kubas-type” interaction. Our simulations not only clarify the mechanism of the reaction among C48. B12, Y atoms and H2 molecules, but also predict a promising candidate for hydrogen storage application with high gravimetric density (7.51%).  相似文献   

9.
In this work, we report on the study of the hydrogen storage capability of titanium (Ti) decorated B36 nanosheets using density functional theory (DFT) calculations with van der Waals corrections. Ti atoms are strongly bonded to the surface of B36 with a binding energy of 6.23 eV, which exceeds the bulk cohesive energy of crystalline Ti. Ti-decorated B36 (2Ti@B36) can reversibly adsorb up to 12 H2 molecules with a hydrogen storage capacity of 4.75 wt % and average adsorption energy between 0.361 and 0.674 eV/H2. The values of desorption temperature and the results of molecular dynamics simulations enable to conclude that 2Ti@B36 is a perspective reversible material for hydrogen storage under real conditions.  相似文献   

10.
Two-dimensional (2D) B2O monolayer is considered as a potential hydrogen storage material owing to its lower mass density and high surface-to-volume ratio. The binding between H2 molecules and B2O monolayer proceeds through physisorption and the interaction is very weak, it is important to improve it through appropriate materials design. In this work, based on density functional theory (DFT) calculations, we have investigated the hydrogen storage properties of Lithium (Li) functionalized B2O monolayer. The B2O monolayer decorated by Li atoms can effectively improve the hydrogen storage capacity. It is found that each Li atom on B2O monolayer can adsorb up to four H2 molecules with a desirable average adsorption energy (Eave) of 0.18 eV/H2. In the case of fully loaded, forming B32O16Li9H72 compound, the hydrogen storage density is up to 9.8 wt%. Additionally, ab initio molecular dynamics (AIMD) calculations results show that Li-decorated B2O monolayer has good reversible adsorption performance for H2 molecules. Furthermore, the Bader charge and density of states (DOS) analysis demonstrate H2 molecules are physically absorbed on the Li atoms via the electrostatic interactions. This study suggests that Li-decorated B2O monolayer can be a promising hydrogen storage material.  相似文献   

11.
In the current study, the density functional theory calculations (DFT) were employed to determine the hydrogen storage properties of some nanoclusters including C24, B12N12, Al12 N12, Be12O12, Mg12O12, and Zn12O12. After full geometrical optimization of all nanocages under the DFT framework, we found that C24 and B12N12 were unstable structures even in case of incorporating only one hydrogen molecule to them due to positive obtained formation energy magnitudes while Al12N12 and Be12O12 were able to adsorb one hydrogen molecules and became thermodynamically unstable for more than one hydrogen molecule. Also, Mg12O12 and Zn12O12 were capable of storing up to 4 hydrogen molecules according to negative achieved formation energies. Also, calculated bulk modulus revealed that when all studied structures stored H2 molecules the bulk modulus decreased compared to pristine nanoclusters. The highest reduction in bulk modulus was 10% which occurred in C24 while storing 5H2. Furthermore, the adsorption properties of these nanocages were considered using DFT and the results showed that Zn12O12 was a stronger adsorbent for H2 in comparison to the rest of the studied nanocages.  相似文献   

12.
The hydrogen binding efficiency of multiple metal-ion (Be2+, Mg2+)-decorated “First Generation” Sulflower (C16S8) systems has been investigated for the first time using density functional ω-B97XD method and 6311++G(d,p) basis set. Our calculations show that the central ring of the aforesaid system can be decorated by a single di-positive metal ion, followed by favorable decoration of at most one pair of metal ions (di-positive each) on the peripheral five-membered rings, both on same and opposite faces with certain preferences. All of the metal ion-decorated complexes are capable of efficient hydrogen binding. Be2+ and Mg2+-decked single ion complexes effectively bind six and four H2 molecules respectively. Moreover, each of the double ion-decorated systems can adsorb ten H2 molecules irrespective of the facial orientation of the metal ions. The average interaction energy (ΔE) between sulflower and metal ions (single and double ions) as well as the average binding energy (ΔBE) per molecular hydrogen of the concerned metal-ion-decorated complexes is found to be much higher for Be2+-decked systems. The nature of interaction between hydrogen molecules and metal ions is explicated by the topological analysis (AIM Analysis) and NBO formalisms. In case of Be2+-decked systems, the amount of charge transfer from H2 bonding orbital to metal anti-bonding orbital is much higher than analogous Mg2+-decorated systems. The Natural Population Analysis (NPA) evaluates the charge variation on the acceptor metal ions due to hydrogen adsorption. In short, our theoretical study gives a comprehensive account of the relationship between the metal ion-decorated sulflower systems and hydrogen molecules, which will further motivate researchers in the field of efficient hydrogen storage materials.  相似文献   

13.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

14.
This work explored the feasibility of Li decoration on the B4CN3 monolayer for hydrogen (H2) storage performance using first-principles calculations. The results of density functional theory (DFT) calculations showed that each Li atom decorated on the B4CN3 monolayer can physically adsorb four H2 molecules with an average adsorption energy of ?0.23 eV/H2, and the corresponding theoretical gravimetric density could reach as high as 12.7 wt%. Moreover, the H2 desorption behaviors of Li-decorated B4CN3 monolayer at temperatures of 100, 200, 300 and 400 K were simulated via molecular dynamics (MD) methods. The results showed that the structure was stable within the prescribed temperature range, and a large amount of H2 could be released at 300 K, indicative of the reversibility of hydrogen storage. The above findings demonstrate that the Li-decorated B4CN3 monolayer can serve as a favorable candidate material for high-capacity reversible hydrogen storage application.  相似文献   

15.
Based on the DFT calculations within GGA approximation, we have systematically studied the ScBn (n = 1–12) clusters and their hydrogen storage properties. The results show that the maximal adsorption for H2 molecules is ScB7 6H2 structure with the hydrogen storage mass fraction about 9.11%. For ScBn·mH2 clusters as n = 7 or 9–12, the average binding energies between 0.202 and 0.924 eV are suggestively conducive to hydrogen storage. In these medium clusters, the moderate adsorption strength can benefit application of hydrogen energy owning to easily adsorption and dissociation on H2 molecules at room temperature and 1 bar pressure. Furthermore, the absorption spectrum is also investigated from TDDFT calculation. An obvious red-shift of spectral lines at 4.2 eV or 5.6 eV is detected with the increase of number of H2 molecules. It can be regard as ‘fingerprint’ spectrum in experiment to indicate adsorption capacity of H2 molecules for ScBn·mH2 nanostructures.  相似文献   

16.
Based on first-principles calculations, we find Li-decorated benzene complexes are promising materials for high-capacity hydrogen storage. Lithium atoms in the complexes are always positively charged, and each one can bind at most four H2 molecules by a polarization mechanism. Therefore, a hydrogen uptake of 8.6 wt% and 14.8 wt% can be achieved in isolated C6H6–Li and Li–C6H6–Li complexes, respectively. The binding energy in the two cases is 0.22 eV/H2 and 0.29 eV/H2, respectively, suitable for reversible hydrogen storage. Various dimers may form, but the hydrogen storage capacity remains high or uninfluenced. This study provides not only a promising hydrogen storage medium but also comprehensions to other hydrogen storage materials containing six-carbon rings.  相似文献   

17.
In this work, adsorption of H2 molecules on heteroborospherene C2v C4B32 decorated by alkali atoms (Li) is studied by density functional theory calculations. The interaction between Li atoms and C4B32 is found to be strong, so that it prevents agglomeration of the former. An introduced hydrogen molecule tilts toward the Li atoms and is stably adsorbed on C4B32. It is obtained that Li4C4B32 can store up to 12H2 molecules with hydrogen uptake capacity of 5.425 wt% and average adsorption energy of ?0.240 eV per H2. Dynamics simulation results show that 6H2 molecules can be successfully released at 300 K. Obtained results demonstrate that Li decorated C4B32 is a promising material for reversible hydrogen storage.  相似文献   

18.
The B6Ca2 and B8Ca2 clusters adopt interesting inverse sandwich architectures, featuring a prolate B6 (or perfect B8) ring jammed with two capping Ca atoms. Both clusters show the high thermodynamic stability due to the double (σ and π) electronic delocalization. In present paper, we computationally studied the hydrogen storage of them. The results suggest that each Ca site in B6Ca2 and B8Ca2 clusters could store up six H2, yielding a gravimetric density of 14.2 wt% for B6Ca2 and 12.6 wt% for B8Ca2. The average adsorption energy for H2-adsorbed B6Ca2 and B8Ca2 complexes is within the scope of 0.12–0.15 eV per H2 at wB97XD level, hinting that two clusters could reversibly store and release hydrogen, which is positively confirmed by the Born-Oppenheimer molecular dynamics simulations. Both B6Ca2 and B8Ca2 nanoclusters are feasible hydrogen storage media under the ambient condition.  相似文献   

19.
The density functional theory is used to study the hydrogen storage abilities of alkali metal Li (Na, K), alkaline-earth metal Mg (Ca), and transition metal Ti (Ti, Sc, Y) decorated B28, which is the possible smallest all-boron cage and contains one hexagonal hole and two octagonal holes. The most stable structure of B28 explored by the calypso search is as same as that explored by Zhao et al. [Nanoscale 7(2015)15086]. It is calculated that the hollow sites outside of the cavities should be the most stable for all metals except for Ti. The average adsorption energy of H2 molecules (Ead) adsorbed by each Na (Ca, K, Mg, Sc, Y and Li) atom outside of the B28 cage are in the range from 0.2 to 0.6 eV, which is suitable for hydrogen storage under near-ambient conditions. However, the largest hydrogen gravimetric density (HGD) for the B28Sc3-12H2 structure is smaller than the target of 5.5 wt% by the year 2017 specified by the US Department of Energy (DOE). Therefore, the metal Ti (Sc) decorated all-boron cage B28 should not be good candidates for hydrogen storage. The calculated desorption temperature and the molecular dynamic simulation indicate that the B28M3-nH2 (M = Na, Li, Ca, K, Mg, Y) structures are easy to desorb the H2 molecules at the room temperature (T = 300 k). Furthermore, the B28 cages bridged by the sp2-terminated B5 chain can hold Na (Li, Ca, K, Mg, Y) atoms to capture hydrogen molecules with moderate Ead and HGD. These findings suggest a new route to design hydrogen storage materials under the near-ambient conditions.  相似文献   

20.
Hydrogen storage properties of Li-decorated graphene oxides containing epoxy and hydroxyl groups are studied by using density functional theory. The Li atoms form Li4O/Li3OH clusters and are anchored strongly on the graphene surface with binding energies of −3.20 and −2.84 eV. The clusters transfer electrons to the graphene substrate, and the Li atoms exist as Li+ cations with strong adsorption ability for H2 molecules. Each Li atom can adsorb at least 2H2 molecules with adsorption energies greater than −0.20 eV/H2. The hydrogen storage properties of Li-decorated graphene at different oxidation degrees are studied. The computations show that the adsorption energy of H2 is −0.22 eV/H2 and the hydrogen storage capacity is 6.04 wt% at the oxidation ratio O/C = 1/16. When the O/C ratio is 1:8, the storage capacity reaches 10.26 wt% and the adsorption energy is −0.15 eV/H2. These results suggest that reversible hydrogen storage with high recycling capacities at ambient temperature can be realized through light-metal decoration on reduced graphene oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号