共查询到20条相似文献,搜索用时 0 毫秒
1.
Ulugbek Azimov Masahiro Okuno Kazuya Tsuboi Nobuyuki Kawahara Eiji Tomita 《International Journal of Hydrogen Energy》2011,36(21):13793-13807
A multidimensional computational fluid dynamics (CFD) simulation of a constructed syngas chemical kinetic mechanism was performed to evaluate the combustion of syngas in a supercharged dual-fuel engine for various syngas initial compositions under lean conditions. The modelled results were validated by comparing predictions against corresponding experimental data for a supercharged dual-fuel engine. The predicted and measured in-cylinder pressure, temperature, and rate of heat release (ROHR) data were in good agreement. The effect of the hydrogen peroxide chain-propagation reaction on the progress of combustion under supercharged conditions was examined for different types of syngas using various initial H2 concentrations. The effect of the main syngas kinetic mechanism reactions on the combustion progress was analysed in terms of their contribution to the total heat of the reaction. The best results compared with experimental data were obtained in the range of equivalence ratios below about 0.8 for all types of syngas considered in this paper. As the equivalence ratio increased above 0.8, the results deviated from the experiment data. The spatial distribution of the in-cylinder temperature and OH∗ within this equivalence-ratio range showed the completeness of the combustion. The present CFD model captured the overall combustion process well and could be further developed into a useful tool for syngas-engine combustion simulations. 相似文献
2.
针对某国Ⅵ天然气发动机各缸燃烧一致性差异过大的问题,利用计算流体力学(CFD)软件STAR-CCM+对该发动机的进气管路开展废气再循环(exhaust gas recirculation,EGR)率均匀性分析,发现第1缸~第3缸的EGR率高于第4缸~第6缸,1 200r/min全负荷工况EGR率相对偏差为-29.9%~34.2%。分析表明,EGR的引出方式为第1缸~第3缸单侧取气,导致EGR进气入口存在较大波动,是造成各缸EGR率分配不均的主要原因。从降低管路内EGR废气波动的角度提出了两种进气管路优化方案,使EGR废气在进入稳压腔之前得到了充分混合,各缸EGR率均匀性得到明显提高,EGR率相对偏差在±5%以内。 相似文献
3.
4.
Xiang LI Wenzheng ZHANG Zhong HUANG Dehao JU Li HUANG Mingzhi FENG Xingcai LU Zhen HUANG 《Frontiers in Energy》2019,13(3):483
Liquefied natural gas (LNG), mainly composed of methane, is in progress to substitute diesel fuel in heavy-duty marine engine for practical, economic, and environmental considerations. However, natural gas is relatively difficult to be ignited in a large bore combustion chamber. A combustion enhancement technique called pre-chamber turbulent jet ignition (TJI) can permit combustion and flame propagation in a large-bore volume. To investigate the effect of air-fuel equivalence ratio and pre-mixed pressure on pre-chamber TJI of methane/air mixtures with multiple orifices in a large bore volume, experimental tests and computational simulations were implemented to study the discharge of hot turbulent jets from six orifices of the pre-chamber. Different initial pressures and air-fuel equivalence ratios were considered to analyze the characteristics of TJI. The asymmetry of the turbulent jet actuated from six different orifices were found due to the asymmetric orientation of the spark plug, resulting in the inhomogeneous distribution of combustion in the constant volume chamber, which should be considered seriously in the marine engine design. Besides, as the premixed pressure increases, it has more effect on the flame propagation and plays a more important role, as it further increases. 相似文献
5.
6.
7.
《International Journal of Hydrogen Energy》2020,45(11):7098-7118
During the past decades, the diesel engine has been through times of upheaval, boom and bust. At the beginning of the century, almost 50% of the new vehicle registrations in the European market were diesel-powered. However, the news of deadly diesel NOx emissions supported by the diesel emission scandals caused a shock to the diesel engine market, and the sustainability of the diesel engine is currently in dispute.Recently major automotive manufacturers announced the development of diesel-powered vehicles with negligible NOx emissions. Moreover, the NOx emissions production is of lower concern for heavy-duty, marine or power generations applications where the implementation of advanced aftertreatment systems is feasible. However, despite the tackle of NOx emissions, the decarbonisation of the automotive, marine and power generation markets is mandatory for meeting greenhouse gas emissions targets and limiting global warming.The decarbonisation of the diesel engine can be achieved by the implementation of a carbon-free fuel such as ammonia. This paper provides a detailed overview of ammonia as a fuel for compression ignition engines. Ammonia can be combusted with diesel or any other lower autoignition temperature fuel in dual-fuel mode and lead to a significant reduction of carbon-based emissions. The development of advanced injection strategies can contribute to enhanced performance and overall emissions improvement. However, ammonia dual-fuel combustion currently suffers from relatively high unburned ammonia and NOx emissions because of the fuel-bound nitrogen. Therefore, the implementation of aftertreatment systems is required. Hence, ammonia as a compression ignition fuel can be currently seen as a feasible solution only for marine, power generation and possibly heavy-duty applications where no significant space constraints exist. 相似文献
8.
9.
The increase in the production of acid gas consisting of H2S, CO2, and associated impurities such as ammonia and hydrocarbons from oil and gas plants and gasification facilities has stimulated the interest in the development of alternative means of acid gas utilization to produce hydrogen and sulfur, simultaneously. The present literature lacks a detailed reaction mechanism that can reliably predict the thermal destruction of NH3 and its blend with H2S and CO2 to facilitate process optimization and commercialization. In this paper, a detailed mechanism of NH3 pyrolysis is developed and is merged with the reactions of NH3 oxidation and H2S/CO2 thermal decomposition from our previous works. The mechanism is validated successfully using different sets of experimental data on the pyrolysis and oxidation of NH3, H2S, and CO2. The proposed mechanism predicts the experimental data on NH3 pyrolysis remarkably better than the existing mechanisms in the literature. The mechanism is used to investigate the effects of NH3 concentration (0–20%) and reactor temperature (1000–1800 K) on the thermal decomposition of H2S and CO2. A synergistic effect is observed in the simultaneous decomposition of NH3 and CO2, i.e., NH3 conversion is improved in the presence of CO2 and the decomposition CO2 to CO is enhanced in the presence of NH3. The presence of H2S suppressed NH3 conversion, while the conversion of H2S remained unchanged with increasing NH3 concentration at temperature below 1400 K due to the low conversion of NH3 (up to 18%). At temperature above 1400 K, NH3 conversion increased rapidly and it triggered a decrease in H2S conversion as well as the yields of H2 and S2. The major reactions involved in the decomposition of H2S, CO2, and NH3 and the production of major products such as H2, S2, and CO are identified. The detailed reaction mechanism can facilitate the design and optimization of acid gas thermal decomposition to produce hydrogen and sulfur, simultaneously. 相似文献
10.
以X92DF超大缸径低速二冲程双燃料船用发动机为研究对象,基于三维数值计算分析了天然气和空气混合过程及燃烧特性,并研究了扫气和燃烧过程中缸内涡流强度对混合质量和火焰传播的影响。结果表明:由于上止点前缸内天然气和空气的混合气浓度分布不均,造成局部高浓度区域出现燃烧异常现象,导致缸内压力振荡幅度增大。通过分析不同涡流强度对缸内天然气/空气的混合质量的影响可以得出,随着扫气过程中涡流强度的增大,上止点前缸内天然气高浓度区域面积明显减小,表明天然气和空气的混合质量得到明显提高。同时,随着缸内涡流比的增加,加快了预燃室射流火焰在主燃烧室内的传播速度和缸内天然气的燃烧速度。进一步研究得出缸内混合质量的提高可以有效地避免局部异常燃烧现象和降低压力振荡。最后,提出一种改善缸内混合质量和减小压力振荡的策略,为液态天然气在船机上的普及提供了一定了理论基础。 相似文献
11.
基于CONVERGE建立了高压直喷(high-pressure direct injection,HPDI)天然气低速船机三维仿真模型,并基于该模型研究了米勒循环和废气再循环(exhaust gas recirculation,EGR)对发动机燃烧特性及污染物排放的影响规律,探究了米勒循环耦合EGR路线满足TierⅢ排放法规的可行性。研究结果表明,单独使用30%EGR率可满足TierⅢ排放标准,但指示油耗和碳烟排放增加显著;应用米勒循环降低NOx排放的潜力低于EGR;过大的排气门晚关角度会增大压气机工作负荷,且降低等量NO_x排放情况下油耗牺牲较大;采用25%EGR率耦合小程度米勒循环(排气门关闭时刻推迟5°曲轴转角)并适当提前天然气喷射正时(提前2°曲轴转角),可在指示油耗仅增加1.58%的前提下降低77%的NO_x排放,是满足TierⅢ排放法规可行的技术路线。 相似文献
12.
《International Journal of Hydrogen Energy》2022,47(83):35365-35385
This paper performs a simulation and assessment of dispersion of natural gas containing hydrogen released from transmission pipeline using a Computational Fluid Dynamics (CFD) approach. A 3D CFD model is established to evaluate the dispersion behavior of hydrogen-enriched natural gas in the hydrogen-natural gas mixing station. The simulations include a matrix of scenarios for hydrogen doping ratios, gas release rates, wind speeds and wind directions. The development process of flammable gas cloud is predicted, and the dangerous area generated in the hydrogen-natural gas mixing station is assessed. Additionally, the effects of some critical factors on flammable gas dispersion behavior are analyzed. The simulations produce some useful outcomes including the parameters of flammable gas cloud and the dangerous area in the station, which are useful for conducting a prior risk assessment and contingency planning. 相似文献
13.
《International Journal of Hydrogen Energy》2022,47(3):2017-2039
Direct gaseous fuel injection in internal combustion engines is a potential strategy for improving in-cylinder combustion processes, performance and emissions outputs and, in the case of hydrogen, could facilitate a transition away from fossil fuel usage. Computational fluid dynamic studies are required to fully understand and optimise the combustion process, however, the fine grids required to adequately model the underexpanded gas jets which tend to result from direct injection make this a difficult and cumbersome task. In this paper the gaseous sphere injection (GSI) model, which utilises the Lagrangian discrete phase model to represent the injected gas jet, is further improved to account for the variation in the jet core length with better estimation due to total pressure ratio change. The improved GSI model is then validated against experimental hydrogen and methane underexpanded freestream jet studies, mixing in a direct injection hydrogen spark ignition engine and combustion in a pilot ignited direct injection methane compression ignition engine. The improved GSI model performs reasonably well across all cases examined which cover various pressure ratios, injector diameters, injection conditions and disparate gases (hydrogen and methane) while also allowing for relatively coarse meshes (cheaper computational cost) to be used when compared to those needed for fully resolved modelling of the gaseous injection process. The improved GSI model should allow for efficient and accurate investigation of direct injection gaseous fuelled engines. 相似文献
14.
15.
湍流射流点火(Turbulent Jet Ignition,TJI)是一种有效的燃烧增强技术,可提供更高的点火能量,使发动机稳定着火,且可以提高燃烧压力和燃烧速率,缩短燃烧持续期,是实现发动机稀薄燃烧的有效手段。基于一台带有预燃室的点燃式单缸试验机,开展了TJI模式下天然气发动机性能的试验研究。首先,研究了不同过量空气系数下TJI对天然气发动机动力性能、排放性能及燃烧特性的影响,并与火花塞点火(Spark Ignition,SI)模式进行对比;其次,在稀燃条件下分别探究了进气增压和预燃室喷氢对天然气发动机动力性、经济性及燃烧过程的优化作用。结果表明:TJI的使用可有效拓展天然气发动机的稀燃极限,且燃烧滞燃期和燃烧持续期均更短,放热率更高;过量空气系数1.5为甲烷TJI最佳稀燃工况,此时燃油消耗率最低,且可实现氮氧化物近零排放;此外,采用进气增压的方式可以提高TJI发动机在高负荷下的经济性;TJI模式下,相较于预燃室喷甲烷,预燃室喷氢气可进一步缩短滞燃期和燃烧持续期,提高放热率,达到提升TJI性能的效果。 相似文献
16.
夏基胜 《小型内燃机与摩托车》2010,39(6):48-51
推导了低热值燃气-柴油双燃料发动机动力性能计算公式,并对由单缸、四冲程、水冷、直喷式柴油机改装的生物制气-柴油双燃料发动机的动力性能进行了计算分析。结果表明:双燃料发动机能够达到原柴油机的动力水平;其动力性能随引燃油量的减小而降低;在新鲜空气充足的前提下,供给更多的燃气,双燃料发动机的动力性能增强;燃气替代率有一最大值,超过该值后,随替代率增大,动力性能急剧下降;燃气低热值越高,替代率便可越大。计算得出的生物制气-柴油双燃料发动机在标定点和最大转矩点的最大生物制气替代率和对应的燃气进气比,与试验结果相吻合。 相似文献
17.
应用AVL-BOOST软件对LY12V140型天然气发动机建立工作过程计算模型,计算模拟配气定时、点火正时、压缩比、增压比、进气温度等参数对发动机燃烧过程和性能的影响,找出这些参数最佳的取值范围,从而为发动机的参数优化匹配奠定理论基础,减少开发过程中的人力、物力和财力的消耗。 相似文献
18.
19.
The oxidation of NH3 during oxy-fuel combustion of methane, i.e., at high [CO2], has been studied in a flow reactor. The experiments covered stoichiometries ranging from fuel rich to very fuel lean and temperatures from 973 to 1773 K. The results have been interpreted in terms of an updated detailed chemical kinetic model. A high CO2 level enhanced formation of NO under reducing conditions while it inhibited NO under stoichiometric and lean conditions. The detailed chemical kinetic model captured fairly well all the experimental trends. According to the present study, the enhanced CO concentrations and alteration in the amount and partitioning of O/H radicals, rather than direct reactions between N-radicals and CO2, are responsible for the effect of a high CO2 concentration on ammonia conversion. When CO2 is present as a bulk gas, formation of NO is facilitated by the increased OH/H ratio. Besides, the high CO levels enhance HNCO formation through NH2+CO. However, reactions NH2+O to form HNO and NH2+H to form NH are inhibited due to the reduced concentration of O and H radicals. Instead reactions of NH2 with species from the hydrocarbon/methylamine pool preserve reactive nitrogen as reduced species. These reactions reduce the NH2 availability to form NO by other pathways like via HNO or NH and increase the probability of forming N2 instead of NO. 相似文献
20.
针对高压直喷(HPDI)天然气双燃料低速船机的燃料喷射系统,研究了不同的天然气预喷策略对发动机燃烧特性及性能的影响,探究了适用于低速船机燃烧系统的天然气喷气规律。利用计算流体力学(CFD)软件Converge建立了HPDI天然气双燃料的单缸机仿真模型,与试验数据进行标定后,计算得到了不同预喷间隔及预喷比例下发动机燃烧性能和排放数据。分析计算结果表明,预喷策略的采用影响了燃烧过程中预混燃烧的比例,从而影响了燃烧放热相位及燃烧等容度。预喷比例相比预喷间隔对燃烧过程的影响更显著,后者在较大预喷比例下才会明显影响缸内燃烧放热过程。合理优化预喷策略可控制预混燃烧程度,从而同时改善NOx排放和油耗。不同的预喷策略使得缸内碳烟分布区域不同;与无预喷算例相比,采用预喷策略的算例最终碳烟排放量偏高。 相似文献