首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
PEM electrolysis for production of hydrogen from renewable energy sources   总被引:4,自引:0,他引:4  
Frano Barbir   《Solar Energy》2005,78(5):661-669
PEM electrolysis is a viable alternative for generation of hydrogen from renewable energy sources. Several possible applications are discussed, including grid independent and grid assisted hydrogen generation, use of an electrolyzer for peak shaving, and integrated systems both grid connected and grid independent where electrolytically generated hydrogen is stored and then via fuel cell converted back to electricity when needed. Specific issues regarding the use of PEM electrolyzer in the renewable energy systems are addressed, such as sizing of electrolyzer, intermittent operation, output pressure, oxygen generation, water consumption and efficiency.  相似文献   

2.
The goal that the international community has set itself is to reduce greenhouse gas (GHG) emissions in the short/medium-term, especially in Europe that committed itself to reducing GHG emissions to 80–95% below 1990 levels by 2050. Renewable energies play a fundamental role in achieving this objective. In this context, the policies of the main industrialized countries of the world are being oriented towards increasing the shares of electricity produced from renewable energy sources (RES).In recent years, the production of renewable energy has increased considerably, but given the availability of these sources, there is a mismatch between production and demand. This raises some issues as balancing the electricity grid and, in particular, the use of surplus energy, as well as the need to strengthen the electricity network.Among the various new solutions that are being evaluated, there are: the accumulation in batteries, the use of compressed air energy storage (CAES) and the production of hydrogen that appears to be the most suitable to associate with the water storage (pumped hydro). Concerning hydrogen, a recent study highlights that the efficiencies of hydrogen storage technologies are lower compared to advanced lead acid batteries on a DC-to-DC basis, but “in contrast […] the cost of hydrogen storage is competitive with batteries and could be competitive with CAES and pumped hydro in locations that are not favourable for these technologies” (Moliner et al., 2016) [1].This shows that, once the optimal efficiency rate is reached, the technologies concerning the production of hydrogen from renewable sources will be a viable and competitive solution. But, what will be the impact on the energy and fuel markets? The production of hydrogen through electrolysis will certainly have an important economic impact, especially in the transport sector, leading to the creation of a new market and a new supply chain that will change the physiognomy of the entire energy market.  相似文献   

3.
A comparison is made between the ambient and conventional temperature alkaline electrolysers in terms of operational system, voltage efficiency and corrosion rates. The capital, operational and maintenance costs are reduced by reducing auxiliary equipment as well as auxiliary utilities in the ambient temperature alkaline electrolyser. Also, since auxiliary electricity consumption is reduced, the alkaline electrolyser is capable for dynamic, continuous and fast-response operation with renewable energy sources. The ambient temperature alkaline electrolyser is capable for wider operational range and faster response time when powered by wind energy sources. Although the voltage efficiency for hydrogen production is increased by about 12% at the conventional operating temperature, corrosion rate of the electrode is increased by a factor of about 6.3. The voltage efficiency for hydrogen production, however, is increased by about 12% by employing electrocatalyst in the ambient temperature alkaline electrolyser, and there is benefit of enhancing lifetime durability of the electrode as well as cell components at relatively lower operating temperature.  相似文献   

4.
Direct current provides accumulation of electricity and is therefore necessary when using renewable energy sources. Hydrogen energy storage devices in the form of fuel cells are the most effective and environmentally friendly way of energy storage and conservation. Shortcomings of electric power networks compared with DC networks in terms of stability, controllability, reliability and redundancy are noted. The necessity of transition from digitalization in the form of automated process control systems to smart grids, and subsequently to multi-agent DC networks with a high degree of redundancy, is revealed. Besides, the paper deals with application of distributed generation consisting of traditional and renewable energy sources, as well as accumulators and static converters. Characteristics of the above mentioned elements are given for simulating the modes in order to select the structure and control algorithms that provide increased power supply reliability.  相似文献   

5.
Integration of renewable energy sources (RES) together with energy storage systems (ESS) changes processes in electric power systems (EPS) significantly. Specifically, rate of change and the lowest values of operating conditions during the emergencies are got influenced. Such changes can cause incorrect actions of relay protection (RP) as it was designed and adjusted with no regard for influence of RES and ESS. Detailed research on processes during the different normal and abnormal modes in both EPS and primary transducers and also in RP devices should be done to take preventive actions. To do this research mathematical modeling based on detailed and authentic models of all elements including RP should be used. HRTSim (which was developed by authors) software for simulating EPS provides the opportunity to create such models of EPS of any size without simplifications and limits. Using of this instrument together with detailed mathematical models of RP which were developed before provided the opportunity to investigate them rigorously in RES-integrated EPS. Settings providing adequate action of RP in certain conditions were performed as a result of this investigation. Fragments of these investigations are performed in this paper. Results of these investigations would be useful for designing new methods and tools of RP adjustment.  相似文献   

6.
In this work, the technical and economical feasibility for implementing a hypothetical electrolytic hydrogen production plant, powered by electrical energy generated by alternative renewable power sources, wind and solar, and conventional hydroelectricity, was studied mainly trough the analysis of the wind and solar energy potentials for the northeast of Brazil. The hydrogen produced would be exported to countries which do not presently have significant renewable energy sources, but are willing to introduce those sources in their energy system. Hydrogen production was evaluated to be around 56.26 × 106 m3 H2/yr at a cost of 10.3 US$/kg.  相似文献   

7.
Hydrogen energy can play a pivotal part in enhancing energy security and decreasing hazardous emissions in Pakistan. However, hydrogen energy can be sustainable and clean only if it is produced from renewable energy sources (RES). Therefore, this study conducts feasibility of six RES for the generation of hydrogen in Pakistan. RES evaluated in this study include wind, solar, biomass, municipal solid waste (MSW), geothermal, and micro-hydro. RES have been evaluated using Fuzzy Delphi, fuzzy analytical hierarchy process (FAHP), and environmental data envelopment analysis (DEA). Fuzzy Delphi finalizes criteria and sub-criteria. FAHP obtains relative weights of criteria considered for choosing the optimal RES. Environmental DEA measures relative efficiency of each RES using criteria weights as outputs, and RES-based electricity generation cost as input. The results revealed wind as the most efficient source of hydrogen production in Pakistan. Micro-hydro and Solar energy can also be used for hydrogen production. Biomass, MSW, and geothermal achieved less efficiency scores and therefore are not suggested at present.  相似文献   

8.
The weather-dependent electricity generation from Renewable Energy Sources (RES), such as solar and wind power, entails that systems for energy storage are becoming progressively more important. Among the different solutions that are being explored, hydrogen is currently considered as a key technology allowing future long-term and large-scale storage of renewable power.Today, hydrogen is mainly produced from fossil fuels, and steam methane reforming (SMR) is the most common route for producing it from natural gas. None of the conventional methods used is GHG-free. The Power-to-Gas concept, based on water electrolysis using electricity coming from renewable sources is the most environmentally clean approach. Given its multiple uses, hydrogen is sold both as a fuel, which can produce electricity through fuel cells, and as a feedstock in several industrial processes. Just the feedstock could be, in the short term, the main market of RES-based hydrogen.In this paper, we present the results obtained from a techno-economic-financial evaluation of a system to produce green hydrogen to be sold as a feedstock for industries and research centres. A system which includes a 200 kW photovoltaic plant and a 180 kW electrolyser, to be located in Messina (Italy), is proposed as a case study. According to the analyses carried out, and taking into account the current development of technologies, it has been found that investment to realise a small-scale PV-based hydrogen production plant can be remunerative.  相似文献   

9.
The production of hydrogen is still a major challenge, due to the high costs and often also environmental burdens it generates. It is possible to produce hydrogen in emission-free way: e.g. using a process of electrolysis powered by renewable energy. The paper presents the concept of a research, experimental stand for the storage of renewable energy in the form of hydrogen chemical energy with the measurement methodology. The research involves the use of proton exchange membrane electrolysis technology, which is characterized by high efficiency and flexibility of energy extraction for the process of electrolysis from renewable sources. The system consist of PV panel, PEM electrolyzer, battery, programmable logic controller system and optional a wind turbine. Preliminary experimental tests results have shown that the electrolyzer can produce in average 158.1 cc/min of hydrogen with the average efficiency 69.87%.  相似文献   

10.
A stand-alone power system based on a photovoltaic array and wind generators that stores the excessive energy from renewable energy sources (RES) in the form of hydrogen via water electrolysis for future use in a polymer electrolyte membrane (PEM) fuel cell is currently in operation at Neo Olvio of Xanthi, Greece. Efficient power management strategies (PMSs) for the system have been developed. The PMSs have been assessed on their capacity to meet the power load requirements through effective utilization of the electrolyzer and fuel cell under variable energy generation from RES (solar and wind). The evaluation of the PMS has been performed through simulated experiments with anticipated conditions over a typical four-month time period for the region of installation. The key decision factors for the PMSs are the level of the power provided by the RES and the state of charge (SOC) of the accumulator. Therefore, the operating policies for the hydrogen production via water electrolysis and the hydrogen consumption at the fuel cell depend on the excess or shortage of power from the RES and the level of SOC. A parametric sensitivity analysis investigates the influence of major operating variables for the PMSs such as the minimum SOC level and the operating characteristics of the electrolyzer and the fuel cell in the performance of the integrated system.  相似文献   

11.
Currently, a significant transformation for energy systems has emerged as a result of the trend to develop an energy framework without fossil fuel reliance, the concerns about climate change and air quality, and the need to provide electricity to around of 17% of world population who lacks the service. Accordingly, the deployment of power plants located close to end-users and including multiple energy sources and carriers, along with the growing share of renewable energies, have suggested changes in the energy sector. Despite their potential capabilities, the design of distributed energy systems (DES) is a complex problem due to the simultaneous goals and constraints that need to be considered, as well as to the high context dependence of this kind of projects. For these reasons, in this work a systematic literature review of DES including hydrogen as energy vector, was made analyzing 106 research papers published between the years 2000–2018, and extracted from Scopus® and Web of Science databases. The aim was to identify how hydrogen is employed (technologies, uses) and the criteria that are evaluated (economic, technical, social and environmental) when these systems are designed, planned and/or operated. The results constitute a baseline information covering the type of technologies, equipment sizes and hydrogen applications, that could be valuable for the preliminary stages of research or project planning of DES involving hydrogen. Furthermore, other factors have also been identified, such as the focus on techno-economic issues, and the lack of considering socio/political aspects and the uncertainty about input data like weather conditions, energy prices and demands. Additionally, a more integrated approach is needed including all the hydrogen supply chain stages and project stakeholders, to tackle issues like safety of the energy systems that could produce consumer rejections.  相似文献   

12.
This paper investigates large scale bio-methane generation from renewable sources, mixing hydrogen produced by water electrolysis and syngas obtained by pressurized oxygen blown biomass gasification.  相似文献   

13.
For the development of the energy infrastructure of remote isolated consumers, an expedient solution is the creation of a modular hybrid energy system based on renewable energy sources, which will save tens of billions of rubles a year by saving expensive diesel fuel. Taking into account the high wind energy resource in these territories, the use of wind power plants as part of that system is justified. The article discusses the methodology for substantiating the parameters and modes of operation of an autonomous wind-diesel power complex based on the territorial-power classification of power supply systems and a 4-level methodology for optimizing parameters, an example of upgrading an existing diesel power plant in the Arkhangelsk region is given. The existing diesel units with a capacity of 1300 kW were replaced by a modular wind-diesel power system with a high renewable penetration level (58%) with four wind turbines with a capacity of 200 kW and a storage system with a capacity of 65 kWh. This made it possible to achieve a diesel fuel replacement share of 232 000 L per year, which in monetary terms in 2021 prices is 25 million rubles per year. As a promising direction, a variant of the territorial development of the energy sector of the Leshukonsky district of the Arkhangelsk region based on wind energy with the possibility of producing up to 100 tons of “green” hydrogen annually is considered. Various options for reducing harmful emissions in the region were considered, the maximum use of local resources allows saving up to 22 000 tons of CO2e per year.  相似文献   

14.
The operation of energy systems considering a multi-carrier scheme takes several advantages of economical, environmental, and technical aspects by utilizing alternative options is supplying different kinds of loads such as heat, gas, and power. This study aims to evaluate the influence of power to hydrogen conversion capability and hydrogen storage technology in energy systems with gas, power, and heat carriers concerning risk analysis. Accordingly, conditional value at risk (CVaR)-based stochastic method is adopted for investigating the uncertainty associated with wind power production. Hydrogen storage system, which can convert power to hydrogen in off-peak hours and to feed generators to produce power at on-peak time intervals, is studied as an effective solution to mitigate the wind power curtailment because of high penetration of wind turbines in electricity networks. Besides, the effect constraints associated with gas and district heating network on the operation of the multi-carrier energy systems has been investigated. A gas-fired combined heat and power (CHP) plant and hydrogen storage are considered as the interconnections among power, gas and heat systems. The proposed framework is implemented on a system to verify the effectiveness of the model. The obtained results show the effectiveness of the model in terms of handling the risks associated with multi-carrier system parameters as well as dealing with the penetration of renewable resources.  相似文献   

15.
The importance of renewable energy compared to fossil fuels is increasing due to growing energy demand and environmental challenges. Multi-generation systems use one or more energy sources and produce several useful outputs. The present study aims at investigating and comparing solar energy based multi-generation systems with and without once-through MSF desalination unit from the thermodynamic point of view. Firstly, hydrogen, electricity, and hot water for space heating and domestic usage are produced using the system, which consists of a parabolic trough collector, an organic Rankine cycle (ORC) and a PEM electrolyzer and heat exchanger as sub-systems. The performance of the entire system is evaluated from the energetic and exergetic points of view. Various parameters affecting hydrogen production rate and efficiency values are also investigated with the thermodynamic model implemented in the Engineering Equation Solver (EES) package. The system can produce hydrogen at a mass flow rate of 20.39 kg/day. The results of the study show that the energy and exergy efficiency values of the ORC are calculated to be 16.80% and 40% while those for the overall system are determined to be 78% and 25.50%, respectively. Secondly, once-through MSF desalination unit is integrated to the system between ORC evaporator and heat exchanger producing domestic hot water in the solar cycle in order not to affect hydrogen production rate while thermodynamic values are compared. Fresh water production capacity of the system is calculated to be at a volumetric flow rate of 5.74 m3/day with 10 stages.  相似文献   

16.
The presented work addresses the design and optimization under uncertainty of power generation systems using renewable energy sources and hydrogen storage. A systematic design approach is proposed that enables the simultaneous consideration of synergies developed among numerous sub-systems within an integrated power generation system and the uncertainty involved in the system operation. The Stochastic Annealing optimization algorithm is utilized to handle the increased combinatorial complexity and to enable the consideration of different types of uncertainty in the performed optimization. A parallel adaptation of this algorithm is proposed to address the associated computational requirements through execution in a Grid computing environment. The proposed developments are implemented in a system that consists of photovoltaic panels, wind generators, accumulators, an electrolyzer, storage tanks, a compressor, a fuel cell and a diesel generator. Numerous design and operating parameters are considered as decision variables, while uncertain parameters are associated with weather fluctuations and operating efficiency of the employed sub-systems. The obtained results indicate robust performance under realizable system designs, in response to external or internal operating variations.  相似文献   

17.
Hydrogen, when used as a fuel, has the most minimal impact on the environment and is a viable, promising, but insufficiently studied alternative fuel. World demand for its production may increase by tens and hundreds of times, and alternative energy sources - renewable and non-renewable, including nuclear ones - are needed to meet it.The paper discusses the characteristics of these sources, shows the important role of nuclear energy.The development of hydrogen production stimulates the development of the symbiosis of nuclear and hydrogen energy in conjunction with renewable energy and allows the formation of a new sustainable global energy system - alternative energy.  相似文献   

18.
The research on wave energy systems has been ongoing for decades. However, there are not many operational wave energy converters in use. The hydrogen energy systems also have a great potential. The proposed solution is to combine wave energy system with hydrogen energy system. The study provides details of simulation models and related simulation results. It is environmentally friendly, safe, feasible and effective. The results indicate that the proposed system model has a very high potential. With the use of low to medium energy density sea states, it is appears to be possible to generate (for DS1, DS2 and DS3, mH2 = 350.8 kg, 623.9 kg and 2124 kg, respectively) a considerable amount of hydrogen in 20-min. The presented results include WEC motion properties, instantaneous and moving average value of other system parameters. The future promising simulations results indicate that next generation wave energy converter systems could be accompanied by hydrogen generation and storage systems.  相似文献   

19.
Hydrogen can be produced from onsite renewable energy, energy from the power grid, or a combination of both. While the cost of grid energy is driven by the energy prices, onsite renewable investments are driven by the levelized cost of renewable energy. Energy prices can widely vary in time and in different locations, potentially having a large impact on the annualized cost of hydrogen (ACOH). Renewable sources can also vary significantly for different locations and seasons. In this paper, we develop a semi-empirical model to find key ACOH locational drivers and trends. The model finds the optimal capacity of the onsite solar and wind generators and the electrolyzer, together with the optimal use of grid energy. We found that an optimal balance between onsite renewable investments and grid energy use is strongly driven by the type of energy price (fixed or variable) and location.  相似文献   

20.
In renewably powered remote hydrogen generation systems, on-site water production is essential so as to service electrolysis in hydrogen systems which may not have recourse to shipments of de-ionised water. Whilst the inclusion of small Reverse Osmosis (RO) units may function as a (useful) dump load, it also directly impacts the power management of remote hydrogen generation systems affecting operational characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号