首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A key component of a Solid Oxide Fuel Cell (SOFC) is the interconnect, which connects individual fuel cells in series to form a fuel cell stack to reach a desired electrical potential. The interconnect is exposed to air and fuel in parallel, these so-called dual-atmosphere conditions give rise to especially severe corrosion on the air-side. This work investigates coatings to mitigate this effect. Physical Vapour Deposition (PVD) CeCo-coated AISI 441 samples on the air-side and PVD metallic Al- and Al2O3-coated AISI 441 samples on the fuel-side were exposed under dual-atmosphere conditions for up to 7000 h. The evolution of the corrosion products was followed every 1000 h with an optical microscope. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were performed on cross-sections of the samples after 3000 h of exposure. The SEM analysis showed that coating on the air-side improved the sample's life-time by reducing the level of Cr evaporation even in a dual-atmosphere. The use of fuel-side coatings suppressed the dual-atmosphere effect since the coatings formed a barrier to hydrogen permeation. The best results were observed with metallic Al and Al2O3 coating on the fuel-side, which drastically reduced the dual-atmosphere effect. However, the poor conductivity of Al2O3 makes its use as a coating challenging.  相似文献   

2.
In this paper, we present an integrated experimental and modeling methodology in predicting the life of coated and uncoated metallic interconnect (IC) for solid oxide fuel cell (SOFC) applications. The ultimate goal is to provide cell designer and manufacture with a predictive methodology such that the life of the IC system can be managed and optimized through different coating thickness to meet the overall cell designed life. Crofer 22 APU is used as the example IC material system. The life of coated and uncoated Crofer 22 APU under isothermal cooling was predicted by comparing the predicted interfacial strength and the interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the measured oxide scale growth kinetics. It was found that the interfacial strength between the oxide scale and the Crofer 22 APU substrate decreases with the growth of the oxide scale, and that the interfacial strength for the oxide scale/spinel coating interface is much higher than that of the oxide scale/Crofer 22 APU substrate interface. As expected, the predicted life of the coated Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.  相似文献   

3.
This study reports the high temperature oxidation kinetics, area specific resistance (ASR), and interfacial microstructure of metallic interconnects coated by (La0.8Sr0.2)0.98MnO3 (LSM) in air atmosphere at 800 °C. An efficient LSM conductive layer was fabricated on metallic interconnects for solid oxide fuel cells (SOFCs) by using a wet spray coating method. The optimum conditions for slurries used in the wet spray coating were determined by the measurement of slurry viscosity and coated surface morphology. The surface roughnesses of the substrates were increased through sandblast treatment. The adhesive strength of the interface between the coated layer and the metal substrate increased with increased surface roughness of the metallic interconnects. The electrical conductivities of the coated substrates were measured by using a DC two-point and four-wire method under air atmosphere at 800 °C. Of note, the Crofer22APU treated at 1100 °C in N2 with 10 vol.% H2 showed long-term stability and a lower ASR value than other samples(heat-treated at 800 °C and 900 °C). After an 8000-h oxidation experiment the coated Crofer22APU substrate, the ASR showed a low value of 23 mΩ cm2. The thickness of the coated conductive oxide layer was about 10-20 μm. These results show that a coated oxide layer prevents the formation and the growth of scale (Cr2O3 and (Mn, Cr, Fe)3O4 layer) and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.  相似文献   

4.
A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.  相似文献   

5.
The need of interconnect to separate fuel and oxidant gasses and connect individual cells into electrical series in a SOFC stack appears as one of the most important point in fuel cell technology. Due to their high electrical and thermal conductivities, thermal expansion compatibility with the other cell components and low cost, ferritic stainless steels (FSS) are now considered to be among the most promising candidate materials as interconnects in SOFC stacks. Despite the formation at 800 °C of a protective chromia Cr2O3 scale, it can transform in volatile chromium species, leading to the lost of its protectiveness and then the degradation of the fuel cell. A previous study demonstrated that in air, the application by metal organic chemical vapour deposition (MOCVD) of a nanometric layer of reactive element oxides (La2O3, Y2O3, Nd2O3) on FSS improved both the electrical conductivity and the oxidation resistance. The beneficial effect of this type of coating on FSS on oxidation resistance in H2/H2O (anode side) is not yet completely understood. So, the goal of this study is to apply reactive element oxide coating (La2O3, Y2O3, Nd2O3) on two FSS (a commercial, Crofer22APU, and a model, Fe30Cr) and to perform oxidation tests in H2/10%H2O. Kinetics was registered for 100 h at 800 °C and the corrosion products were characterized by SEM, EDX, TEM, SIMS and XRD.  相似文献   

6.
7.
This work describes the performance and testing of a glass-ceramic sealant used to join the ceramic electrolyte (anode-supported-electrolyte (ASE)) to the metallic interconnect (Crofer22APU) in planar SOFC stacks. The designed glass-ceramic sealant is a barium and boron free silica-based glass, which crystallizes by means of the heat-treatment after being deposited on substrates by the slurry technique.Joined ASE/glass-ceramic seal/Crofer22APU samples were tested for 500 h in H2–3H2O atmosphere at the fuel cell operating temperature of 800 °C.Moreover, the joined ASE/glass-ceramic seal/Crofer22APU samples were submitted to three thermal cycles each of 120 h duration, in order to evaluate the thermomechanical stability of the sealant.The microstructures and elemental distribution at Crofer22APU/glass-ceramic and ASE/glass-ceramic interfaces were investigated.SEM micrograph observations of joined samples that underwent cyclic thermal tests and exposure for 500 h in H2–3H2O atmosphere showed that the adhesion between the glass-ceramic and Crofer22APU at either interface was very good and no microstructural changes were detected at the interfacial boundaries.The study showed that the use of the glass-ceramic was successful in preventing strong adverse corrosion effects at the Crofer22APU/glass-ceramic sealant interface.  相似文献   

8.
Reactivity of oxide scale on Fe-Cr alloy with Na-containing gases was examined to estimate the stability against sodium (Na): vapors of NaCl and Na2SO4 exposures with air flow at 1073 K. The identified reaction phases were Cr-Mn spinel, Cr2O3, and alloy from the X-ray diffraction of surface with no Na-reaction products. However, the protective oxide scales (Mn-Cr spinel and Cr2O3 layers) on the Fe-Cr alloy were partially decomposed by reacting with Na to form Na-compounds inside the oxide scale/alloy interfaces. In some parts, anomalous oxide scales were found around the oxide scale/Fe-Cr alloy interfaces, with forming Na-rich compounds: the compounds were distributed inner parts of oxide scales around oxide scale/alloy interfaces. The stability of oxide scales and degradation were discussed based on the observed distribution of elements.  相似文献   

9.
In order to decrease oxide growth kinetics, maintain suitable conductivity and prevent Cr-volatilization of AISI 430 stainless steels (430 SS) as the interconnect for intermediate temperature solid oxide fuel cells (SOFCs), a CoNiO spinel oxide protective coating has been successfully fabricated on the 430 SS specimen using a simple and cheap process with two steps: 1) electroplation of CoNi alloy layer and 2) pre-oxidation treatment to convert the CoNi alloy into spinel oxide. The CoNiO spinel layer on the 430 SS (CoNiO 430 SS) is dense and uniform with 8–10 μm thickness. And the CoNiO spinel oxide protective coating consists of a main face-centered-cubic (fcc) NiCo2O4 spinel phase and a minor fcc NiO phase. Compared with bare 430 SS, the oxidation resistance and the conductivity of the CoNiO 430 SS have been improved remarkably under simulated typical SOFC operating cathode conditions (at 800 °C in air). After an isothermal oxidation test at 800 °C, the area specific resistance (ASR) of CoNiO 430 SS is much lower and stable (0.1 Ω cm2 for 100 h and 0.9 Ω cm2 for 600 h) than that of bare 430 SS (1.2 Ω cm2 for 100 h and 2.4 Ω cm2 for 600 h). These performances of CoNiO 430 SS imply that it can be a promising candidate interconnect for solid oxide fuel cell.  相似文献   

10.
Planar solid oxide fuel cells (SOFC) are considered to be power generators with high efficiency and low emission at small power units (1-200 kWel). Many prototype systems are already successfully realized. For mass production the costs have to be reduced and the long-term stability has to be enhanced. Power losses <0.5%/1000 h is the target value for stacks in stationary SOFC-based power systems. To reach this goal, the factors influencing degradation have to be found and reduced. In this work the interaction between interconnect and different ceramic materials such as perovskites (La0.8Sr0.2(Mn,Co)O3, La0.65Sr0.3MnO3, La0.65Sr0.3(Mn,Co)O3) and spinels (Mn(Co,Fe)O4, (Cu,Ni)Mn2O4) was investigated on the cathode (air) side of conventional ferritic interconnect materials (CroFer22APU, ITMLC, ZMG232L). The method to determine the value of the area specific resistance between interconnect and contact layer (R#ICC) within a tolerance of 10% has been developed to provide reliable data for ASR values and their degradation.The R#ICC-value increases with annealing time. The degree of this increase depends on used materials and their combination. The spinel contact layers form a thin dense ceramic layer at the beginning of the annealing process. This layer reduces the oxidation rate of the alloy. Because of this protection layer a thinner oxide scale grows and the ASR aging rate is much lower (0.4-0.9 mΩ cm2/1000 h). The comparison of the aging rates of different alloys with La0.8Sr0.2(Mn,Co)O3 contact layer reveals remarkable differences: 3.1 mΩ cm2/1000 h for CroFer22APU, 10.9 mΩ cm2/1000 h for ITMLC and 21.2 mΩ cm2/1000 h for ZMG232L.The degradation in a stack has been determined from the R#ICC-values and geometric factors. The impact of oxidation at the cathode side of interconnect is about one third of the total stack degradation. The method opens the possibility for comparing area specific resistances of special material combinations with high accuracy. By optimized material combinations the degradation in stacks can be reduced to <0.5%/1000 h.  相似文献   

11.
In recent years, a number of ferritic interconnect materials for use in solid oxide fuel cells (SOFC) have been developed and are now commercially available. Although similar, there are substantial variations in minor alloying elements. This study compares the oxidation performance of five such interconnect materials: Crofer 22 H, Crofer 22 APU (ThyssenKrupp VDM), Sanergy HT (Sandvik Materials Technology), ZMG232 G10 (Hitachi Metals) and E-Brite (ATI Allegheny Ludlum).  相似文献   

12.
Haynes 242 is a unique Ni based alloy for interconnect application of solid oxide fuel cells (SOFCs), due to its low CTE (coefficient of thermal expansion) value which matches other fuel cell components over its peer of other Ni based alloys, together with very excellent oxidation resistance, and electrical conductive nature of the thermally grown oxide scales. A Ni–Mo rich intermetallic phase was observed to precipitate in this alloy during the thermal exposure in the SOFC environments and cause stability issue. This paper examined the stability of Haynes 242 in terms of oxidation resistance, electrical property, and oxidation kinetics as interconnects of solid oxide fuel cells. Results indicated that the precipitation helped significantly towards formation of NiO to reduce the Cr evaporation, and influenced little on oxidation resistance and electrical property.  相似文献   

13.
Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600-800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.  相似文献   

14.
The spinel structure of manganese cobalt oxide (Mn,Co)3O4 is one of the most promising coatings for solid oxide fuel cell (SOFC) stainless steel interconnects. The stoichiometric Mn1.5Co1.5O4 composition has properties that are preferable to other Mn/Co ratios, for example a higher conductivity and a thermal expansion coefficient that matches the typical steel substrate. However, previous work showed the Mn/Co ratio changes during operation due to the diffusion of Mn from the substrate. The results presented here are on three coatings with different compositions (namely; pure Co, Mn20Co80, and Mn40Co60) with each coating composition deposited to a thickness of 800 nm, 1500 nm, and 3000 nm. The coatings were applied by DC magnetron sputtering and then machine cut into coupons for isothermal annealing at 800 °C in air using a batch-type furnace for 2, 10, 50, 250, and 1000 h. The morphology, chemical composition (including surface and cross sections of the layers) and structures of the oxides formed were analyzed by SEM, EDS and XRD. Analysis of the element diffusion (Mn, Co, Cr, Fe) shown here points to an optimized coating recipe of Mn40Co60.  相似文献   

15.
固体氧化物燃料电池(SOFC)采用的是全固体的电池结构,可进行甲烷、燃料油(汽油、柴油)的内部重整、适用于多种燃料气,从而解决了燃料的供应问题?固体氧化物燃料电池不但可以应用于固定电站。在电动车方面也有很好的发展前景。较详细地介绍了SOFC在汽车方面的应用以及为了实现这一技术的产业化所必须解决的关键问题。  相似文献   

16.
For IT-SOFC metallic interconnects, surface coating is effective for reducing Cr poisoning of the cathode and controlling scale growth. In this work, LaCrO3 and doped LaCrO3 coatings were deposited by magnetron sputtering on SS446 and Crofer 22 APU substrates. The crystallization process was studied by means of X-ray Diffraction (XRD) during the annealing of the sputter coated samples in ambient and reducing environments. The formation of intermediate phases when annealed in air, LaCrO4 and La2CrO6, results in vacancy formation upon subsequent transformation to the LaCrO3 phase and thus a decreased oxidation resistance. While the avoidance of an intermediate phase change when the coatings are initially annealed in a reducing environment leads to dense and compact coatings. This confirmed both by XRD and by scanning electron microscopy (SEM) of coating cross-sections. Crofer 22 APU alloys with various silicon and aluminum levels are deposited with doped LaCrO3 coating to study substrate impurity effects on coating properties. It was found that silicon content in the substrates leads to increased ASR of the coatings. In addition, long term annealing in air shows that aluminum impurities in the substrate can lead to the formation of alumina at substrate grain boundaries, which in turn leads to enhanced Mn migration at the grain boundaries. Increased manganese concentrations at the film/grain boundary interface in coated samples produces larger than normal amounts of (Mn,Cr)3O4 spinel in these regions, which cracks the coating and reduces the ASR value due to extra electronic conduction path. A similar mechanism is not observed in a low Al/Si alloy.  相似文献   

17.
A novel alkaline-earth silicate (Sr-Ca-Y-B-Si-Zn) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sandwiched between two metallic interconnect plates and tested for electrical stability in a dual environment at elevated temperatures of 800-850 °C. A ferritic stainless steel (Crofer22APU) was used as the metallic interconnect material in the as-received state and coated with (Mn,Co)3O4 spinel. The isothermal aging results showed stable electrical resistivity at 800-850 °C for ∼500-1000 h. The electrical resistivities at 800 or 850 °C of the spinel coated samples were lower than the as-received ones; however, they were still several orders of magnitude higher than typical SOFC functional parts. Interfacial microstructure was characterized and possible reactions are discussed.  相似文献   

18.
A series of alkaline-earth aluminosilicate glass-ceramics (GCs) were appraised with respect to their suitability as sealants for solid oxide fuel cells (SOFCs). The parent composition with general formula Ca0.9MgAl0.1La0.1Si1.9O6 was modified with Cr2O3 and BaO. The addition of BaO led to a substantial decrease in the total electrical conductivity of the GCs, thus improving their insulating properties. BaO-containing GCs exhibited higher coefficient of thermal expansion (CTE) in comparison to BaO-free GCs. An extensive segregation of oxides of Ti and Mn, components of the Crofer22 APU interconnect alloy, along with negligible formation of BaCrO4 was observed at the interface between GC/interconnects diffusion couples. Thermal shock resistance and gas-tightness of GC sealants in contact with yttria-stabilized zirconia electrolyte (8YSZ) was evaluated in air and water. Good matching of CTE and strong, but not reactive, adhesion to the solid electrolyte and interconnect, in conjunction with a high level of electrical resistivity, are all advantageous for potential SOFC applications.  相似文献   

19.
Ultra-low sulphur diesel (ULSD) is the preferred fuel for mobile auxiliary power units (APU). The commercial available technologies in the kW-range are combustion engine based gensets, achieving system efficiencies about 20%. Solid oxide fuel cells (SOFC) promise improvements with respect to efficiency and emission, particularly for the low power range. Fuel processing methods i.e., catalytic partial oxidation, autothermal reforming and steam reforming have been demonstrated to operate on diesel with various sulphur contents. The choice of fuel processing method strongly affects the SOFC's system efficiency and power density.This paper investigates the impact of fuel processing methods on the economical potential in SOFC APUs, taking variable and capital cost into account. Autonomous concepts without any external water supply are compared with anode recycle configurations. The cost of electricity is very sensitive on the choice of the O/C ratio and the temperature conditions of the fuel processor. A sensitivity analysis is applied to identify the most cost effective concept for different economic boundary conditions.The favourite concepts are discussed with respect to technical challenges and requirements operating in the presence of sulphur.  相似文献   

20.
The objective of this study is to evaluate metal-supported solid oxide fuel cells fabricated at low temperatures (~1000 °C) in oxidizing environments using wet chemical coating processes and a catalyst impregnation method. Typically, applying general wet chemical coating processes and heat treatment at low temperature is desirable for fabricating metal-supported solid oxide fuel cells when considering manufacturing productivity and efficiency. However, in the case of conventional anodes, a well-organized structure for high performance is rarely formed by sintering at low temperatures when using general fabrication processes. For this reason, a catalyst-impregnated anode is designed and applied to overcome the above issue. First, to evaluate the electrochemical performance of the designed anode, the area-specific resistances of half-cells are investigated. Then, the newly designed anode is applied to a single cell, and microstructural analysis and electrochemical performance measurements are performed. These results confirm that the catalysts are well distributed, that the electrolyte is fully dense and that the electrochemical performances are reasonable. Additionally, the high durability is also verified through a long-term test over 1000 h. Finally, the metal-supported solid oxide fuel cell with a catalyst-impregnated anode fabricated at low temperature is completely validated through the evaluation of a large-size single cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号