首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as ‘dual-fuel engines’. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that ‘dual-fuel concept’ is a promising technique for controlling both NOx and soot emissions even on existing diesel engine. But, HC, CO emissions and ‘bsfc’ are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition characteristics of the gaseous fuels need more research for a long-term use in a dual-fuel engine. It is found that, the selection of engine operating and design parameters play a vital role in minimizing the performance divergences between an existing diesel engine and a ‘gas diesel engine’.  相似文献   

2.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

3.
The use of hydrogen in internal combustion engines is pointed out as an alternative to reduce greenhouse gas emissions. In applications that require high levels of torque and low engine speeds, compression ignition (CI) engines are more appropriate. However, because of the high auto-ignition temperature of hydrogen, its use in these engine types is more suitable when the dual-fuel concept is applied. This study comprehensively investigates, through experimental techniques, the use of hydrogen port-injection in a four-stroke single-cylinder CI engine operating with the renewable diesel-like fuels hydrotreated vegetable oil (HVO) and farnesane, in comparison to fossil diesel dual-fuel operation. In this sense, the present work aims to fill a gap in the literature by performing a novel analysis of dual-fuel operation with hydrogen, considering different substitution fractions, and using groundbreaking biofuels, such as HVO and farnesane. The results showed that in-cylinder pressure and temperature were increased with H2 enrichment for every pilot fuel, but green diesel fuels presented lower values than those for diesel operation. Furthermore, hydrogen port injection slightly delayed the start of combustion and increased the ignition delay, but a reduction in both premixed and diffusion combustion duration was observed. Reductions in PM, CO, and CO2 emissions were reported during H2 addition for every pilot fuel, while increased NOx was observed. Despite this increase, both HVO and farnesane decreased the emissions of this pollutant in single and dual-fuel operations, compared with fossil diesel. In addition, both renewable diesel fuels presented higher BTE than diesel for every studied H2 mass flow.  相似文献   

4.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen (H2), and three other hydrogen-containing gaseous fuels such as primary fuels, and diesel as pilot fuel in dual-fuel mode. The energy share of primary fuels was about 90% or more, and the rest of the energy was supplied by diesel fuel. The hydrogen-containing fuels tested in this study were 13.7% H2-content producer gas, 20% H2-content producer gas and 56.8% H2-content coke oven gas (COG). Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the pilot injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Better thermal efficiency was obtained with the increase in H2 content in the fuels, and neat H2 as a primary fuel produced the highest thermal efficiency. The fuel-air equivalence ratio was decreased with the increase in H2 content in the fuels to avoid knocking. Thus, neat H2-operation produced less maximum power than other fuels, because of much leaner operations. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. The emissions of CO and HC with neat H2-operation were 98-99.9% and NOx about 85-90% less than other fuels.  相似文献   

5.
Hydrogen-diesel dual-fuel operation can provide significant benefits to the performance and carbon-based emissions formation of compression-ignition engines. The wide flammability range of hydrogen allows engine operation at extremely low equivalence ratios while its high diffusivity and flame speed promote wide range combustion inside the cylinder. Nonetheless, despite the excellent properties of hydrogen for internal combustion, unburned hydrogen emissions and poor combustion efficiency have been previously observed at low-load conditions of compression ignition engines.The focus of the present study is to assess the effects of different engine operation and diesel injection parameters on the combustion efficiency of a heavy-duty dual-fuel engine while observing their interactions with the brake thermal efficiency (BTE) and emissions formation of the engine. In an attempt to reduce the unburned hydrogen rates at the exhaust of the engine, exhaust gas recirculation (EGR) and different diesel injection strategies were implemented. Statistical methods were applied in this study to reduce the experimental time.The results show a strong connection between unburned hydrogen rates, combustion and brake thermal efficiencies with the EGR rate. Higher EGR rates increase the intake charge temperature and provide improved hydrogen combustion and fuel economy. Operation of the dual-fuel engine at low-load with high EGR rate and slightly advanced main diesel injection can deliver simultaneous benefits to most of the harmful emissions and the BTE of the engine. Despite the efforts to achieve optimal engine operation at low loads, the combustion efficiency for most of the tested cases was in the range of 90%. Thus, increased hydrogen rates should be avoided as the benefits of the dual-fuel operation are weak at low-load conditions.  相似文献   

6.
Hydrocarbon exhaust emissions are mainly recognized as a consequent of carbon-based fuel combustion in compression ignition (CI) engines. Alternative fuels can be coupled with hydrocarbon fuels to control the pollutant emissions and improve the engine performance. In this study, different parameters that influence the engine performance and emissions are illustrated with more details. This numerical work was carried out on a dual-fuel CI engine to study its performance and emission characteristics at different hydrogen energy ratios. The simulation model was run with diesel as injected fuel and hydrogen, along with air, as inducted fuel. Three-dimensional CFD software for numerical simulations was implemented to simulate the direct-injection CI engine. A reduced-reaction mechanism for n-heptane was considered in this work instead of diesel. The Hiroyasu-Nagel model was presented to examine the rate of soot formation inside the cylinder. This work investigates the effect of hydrogen variation on output efficiency, ignition delay, and emissions. More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Strategies such as an exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. The relationship among the engine outputs and the operation conditions were also considered.  相似文献   

7.
Demand for fossil fuels is increasing day by day with the increase in industrialization and energy demand in the world. For this reason, many countries are looking for alternative energy sources against this increasing energy demand. Hydrogen is an alternative fuel with high efficiency and superior properties. The development of hydrogen-powered vehicles in the transport sector is expected to reduce fuel consumption and air pollution from exhaust emissions. In this study, the use of hydrogen as a fuel in vehicles and the current experimental studies in the literature are examined and the results of using hydrogen as an additional fuel are investigated. The effects of hydrogen usage on engine performance and exhaust emissions as an additional fuel to internal combustion gasoline, diesel and LPG engines are explained. Depending on the amount of hydrogen added to the fuel system, the engine power and torque are increased at most on petrol engines, while they are decreased on LPG and diesel engines. In terms of chemical products, the emissions of harmful exhaust gases in gasoline and LPG engines are reduced, while some diesel engines increase nitrogen oxide levels. In addition, it is understood that there will be a positive effect on the environment, due to hydrogen usage in all engine types.  相似文献   

8.
The high flammability of hydrogen gas gives it a steady flow without throttling in engines while operating. Such engines also include different induction/injection methods. Hydrogen fuels are encouraging fuel for applications of diesel engines in dual fuel mode operation. Engines operating with dual fuel can replace pilot injection of liquid fuel with gaseous fuels, significantly being eco-friendly. Lower particulate matter (PM) and nitrogen oxides (NOx) emissions are the significant advantages of operating with dual fuel.Consequently, fuels used in the present work are renewable and can generate power for different applications. Hydrogen being gaseous fuel acts as an alternative and shows fascinating use along with diesel to operate the engines with lower emissions. Such engines can also be operated either by injection or induction on compression of gaseous fuels for combustion by initiating with the pilot amount of biodiesel. Present work highlights the experimental investigation conducted on dual fuel mode operation of diesel engine using Neem Oil Methyl Ester (NeOME) and producer gas with enriched hydrogen gas combination. Experiments were performed at four different manifold hydrogen gas injection timings of TDC, 5°aTDC, 10°aTDC and 15°aTDC and three injection durations of 30°CA, 60°CA, and 90°CA. Compared to baseline operation, improvement in engine performance was evaluated in combustion and its emission characteristics. Current experimental investigations revealed that the 10°aTDC hydrogen manifold injection with 60°CA injection duration showed better performance. The BTE of diesel + PG and NeOME + PG operation was found to be 28% and 23%, respectively, and the emissions level were reduced to 25.4%, 14.6%, 54.6%, and 26.8% for CO, HC, smoke, and NOx, respectively.  相似文献   

9.
During the last years a great effort has been made to reduce pollutant emissions from direct injection (DI) diesel engines. Towards this, engineers have proposed various solutions, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as dual fuel engines. The main aspiration from the usage of dual fuel (liquid and gaseous one) combustion systems is mainly to reduce particulate emissions and nitrogen oxides.One of the gaseous fuels used is natural gas, which has a relatively high auto ignition temperature and moreover is an economical and clean burning fuel. The high auto ignition temperature of natural gas is a serious advantage against other gaseous fuels since the compression ratio of most conventional DI diesel engines can be maintained. Moreover the combustion of natural gas produces practically no particulates since natural gas contains less dissolved impurities (e.g. sulfur compounds).The present contribution is mainly concerned, with an experimental investigation of the characteristics of dual fuel operation when liquid diesel is partially replaced with natural gas under ambient intake temperature in a DI diesel engine. Results are given revealing the effect of liquid fuel percentage replacement by natural gas on engine performance and emissions.  相似文献   

10.
An experimental study is conducted to evaluate the use of JP-8 aviation fuel as a full substitute for diesel fuel in a Ricardo E-6 high-speed naturally-aspirated four-stroke experimental engine having a swirl combustion chamber. The study covers a wide range of engine load and speed operating conditions, comprising measurements of cylinder pressure diagrams, high-pressure fuel pipe pressures, exhaust gas temperatures, fuel consumptions, exhaust smokiness and exhaust gas emissions (nitrogen oxides, unburned hydrocarbons and carbon monoxide). Processing of the measurements provides important performance parameters such as maximum combustion pressure, dynamic injection timing, ignition delay, combustion irregularity and knocking tendency. The differences in the measured performance and exhaust emission parameters are determined for engine operation with JP-8 fuel, against baseline engine operation using diesel fuel. The study shows that the exhaust emission levels are not much different for operation with the two fuels. On the contrary, operation with JP-8 fuel increases combustion pressures, combustion intensity and irregularity. This is caused mainly by high pressure fluctuations present in the fuel injection system due to the different physical properties of JP-8 fuel (compared to diesel fuel), which totally change the injection characteristics. Retardation of the static injection timing is one means of improving this situation, while using the same fuel injection equipment. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

12.
Using nonedible waste frying oil (WFO) as biodiesel and hydrogen in the mix composition may partly replace significant quantities of diesel fuel and help reduce fossil fuel reliance. The combination of diesel fuel, waste-fired biodiesel, and hydrogen gas can improve the performance, combustion, and emissions of single-fuel and dual-fuel diesel engines. This may lead to a novel alternative fuel mix pattern and modification for diesel engines, which is the research gap. Although there has been some research on waste-fired biodiesel and hydrogen gas-powered dual-fuel engines with the goal of partly replacing fossil fuels to a larger degree, there has been very little progress in this area. As a result, the current research effort focuses on using diesel fuel (100%, 30%, and 60%), waste-fired biodiesel (at 100%, 70%, and 40%), and hydrogen gas as fuel sources (5 and 10 liters per minute [LPM]). According to the current experiment, it was perceived in both dual-fuel and single-fuel modes. Under duel-fuel mode, the engine results for WFOB70D30 + H10 fuel blend had higher 4.2% (brake thermal efficiency [BTE]), 19.72% (oxides of nitrogen [NOx]), and 9.09% (ignition delay [ID]) with a minimal range of (in-cylinder pressure, MFB, volumetric efficiency and heat release rate [HRR]) and a dropped rate of 4.34% (brake-specific energy consumption [BSEC]), 33.33% (carbon monoxide [CO]), 39.28% (hydrocarbons [HC]), 9.43% (smoke), and 6.97% (combustion duration [CD]) related to diesel fuel at peak load. However, single-fuel powered diesel engines provide minimal performance for the WFOB40D60 fuel blend with (11.32% lower BTE and 2.04% higher BSEC) and minimal rate of combustion (lower cylinder pressure, 2.12% minimal CD, 14.72% higher ID, minimal HRR combustion, volumetric efficiency, and MFB). Emitted fewer emissions (9.09% less CO, 4.87% less HC, 0.92% higher NOx, and 1.69% more smoke) than diesel fuel at peak load. Therefore, it was concluded that adding 10 LPM of hydrogen gas to the biodiesel under a dual-fuel condition leads to better combustion, better performance, and less pollution than the single-fuel mode of operation.  相似文献   

13.
The paper presents results of experimental research on a dual-fuel engine powered by diesel fuel and natural gas enriched with hydrogen. The authors attempted to replace CNG with hydrogen fuel as much as possible with a constant dose of diesel fuel of 10% of energy fraction. The tests were carried out for constant engine load of IMEP = 0.7 MPa and a rotational speed of n = 1500 rpm. The effect of hydrogen on combustion, heat release, combustion stability and exhaust emissions was analyzed. In the test engine, the limit of hydrogen energy fraction was 19%. The increase in the fraction caused an increase in the cycle-by-cycle variation and the occurrence of engine knocking. It was shown that the enrichment of CNG with hydrogen allows for the improvement in the combustion process compared to the co-combustion of diesel fuel with non-enriched CNG, where the reduction in the duration of combustion by 30% and shortening the time of achieving 50% of MFB by 50% were obtained. The evaluation of the spread of the end of combustion is also presented. For H2 energetic share over 20%, the spread of end of combustion was 48° of crank angle. Measurement of exhaust emissions during the tests revealed an increase in THC and NOx emissions.  相似文献   

14.
This paper experimentally investigates the influence of hydrogen enrichment on the combustion and emission characteristics of a diesel HCCI engine using a modified Cooperative Fuel Research (CFR) engine. Three fuels, n-heptane and two middle distillates with cetane numbers of 46.6 and 36.6, are studied.The results show that hydrogen enrichment retards the combustion phasing and reduces the combustion duration of a diesel HCCI engine. Besides, hydrogen enrichment increases the power output and fuel conversion efficiency, and improves the combustion stability. However, hydrogen enrichment may narrow the operational compression ratio range and increase the knocking tendency. Both the overall indicated specific CO emissions (isCO) and CO emissions per unit burned diesel fuel mass are reduced by hydrogen enrichment. Although hydrogen enrichment decreases the overall indicated specific unburned hydrocarbon emissions (isHC), it does not significantly affect the HC emissions per unit burned diesel fuel mass.  相似文献   

15.
An experimental investigation on DI diesel engine with hydrogen fuel   总被引:1,自引:0,他引:1  
The internal combustion engines have already become an indispensable and integral part of our present day life style, particularly in the transportation and agricultural sectors [Nagalingam B. Properties of hydrogen. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984]. Unfortunately the survival of these engines has, of late, been threatened due to the problems of fuel crisis and environmental pollution. Therefore, to sustain the present growth rate of civilization, a nondepletable, clean fuel must be expeditiously sought. Hydrogen exactly caters to the specified needs. Hydrogen, even though “renewable” and “clean burning”, does give rise to some undesirable combustion problems in an engine operation, such as backfire, pre-ignition, knocking and rapid rate of pressure rise [Srinivasa Rao P. Utilization of hydrogen in a dual fueled engine. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984; Siebers DL. Hydrogen combustion under diesel engine conditions. Hydrogen Energy 1998;23:363–71]. The present investigation compares the performance and emission characteristics of a DI diesel engine with gaseous hydrogen as a fuel inducted by means of carburation technique and timed port injection technique (TPI) along with diesel as a source of ignition [Swain N, Design and testing of dedicated hydrogen-fueled engine. SAE 961077, 1996]. In the present study the specific energy consumption, NOx emission and the exhaust gas temperature increased by 6%, 8% and 14%, respectively, and brake thermal efficiency and smoke level reduced by 5% and 8%, respectively, using carburation technique compared to baseline diesel. But in the TPI technique, the specific energy consumption, exhaust gas temperature and smoke level reduced by 15%, 45% and 18%, respectively. The brake thermal efficiency and NOx increased by 17% and 34%, respectively, compared to baseline diesel. The emissions such as HC, CO, and CO2 is very low in both carburation and TPI techniques compared baseline diesel.  相似文献   

16.
Consumers conventionally adopt diesel generation to meet the energy needs where the grid connection is unreliable or unavailable. While electrification has provided these communities a variety of economic and social opportunities, diesel consumption has resulted in adverse costs and environmental pollution. Two technologies available to reduce the expense and emissions of diesel fuel reliance include dual fuel or hybrid diesel applications. The dual-fuel approach involves a supplementary gas fuel charge in support of reduced diesel fuel consumption. Hybrid applications involve the integration of renewable generation to displace diesel fuel consumption. This paper reviews the potential for hybrid dual-fuel applications, identifying engine flexibility as a major integration barrier. In comparing the flexibility of various dual-fuel technologies to operate dynamically, this paper presents a critical review across hydrogen, liquified petroleum gas (LPG), natural gas (NG) and blended hydrogen and NG derivatives. The results identify a range of approaches able to improve engine flexibility and thus reduce the cost and carbon intensity of diesel-fired internal combustion engines. At low load conditions, while NG and LPG exhibit similar performance, the use of hydrogen and hydrogen blends provide improved engine performance and response. Unfortunately, given the current cost of hydrogen fuel, significant commercial barriers exist to the adoption of hydrogen or hydrogen blended fuels. Despite this, this review indicates the potential of hydrogen-NG blends to offer additional flexibility in comparison to alternative dual-fuel technologies. This position is furthered considering near term cost targets associated with the development of a global green hydrogen industry, coupled with its ability to serve as a demand-side management approach within isolated power systems, one of the multiple future research themes.  相似文献   

17.
This article is a condensed overview of a dimethyl ether (DME) fuel application for a compression ignition diesel engine. In this review article, the spray, atomization, combustion and exhaust emissions characteristics from a DME-fueled engine are described, as well as the fundamental fuel properties including the vapor pressure, kinematic viscosity, cetane number, and the bulk modulus. DME fuel exists as gas phase at atmospheric state and it must be pressurized to supply the liquid DME to fuel injection system. In addition, DME-fueled engine needs the modification of fuel supply and injection system because the low viscosity of DME caused the leakage. Different fuel properties such as low density, viscosity and higher vapor pressure compared to diesel fuel induced the shorter spray tip penetration, wider cone angle, and smaller droplet size than diesel fuel. The ignition of DME fuel in combustion chamber starts in advance compared to diesel or biodiesel fueled compression ignition engine due to higher cetane number than diesel and biodiesel fuels. In addition, DME combustion is soot-free since it has no carbon–carbon bonds, and has lower HC and CO emissions than that of diesel combustion. The NOx emission from DME-fueled combustion can be reduced by the application of EGR (exhaust gas recirculation). This article also describes various technologies to reduce NOx emission from DME-fueled engines, such as the multiple injection strategy and premixed combustion. Finally, the development trends of DME-fueled vehicle are described with various experimental results and discussion for fuel properties, spray atomization characteristics, combustion performance, and exhaust emissions characteristics of DME fuel.  相似文献   

18.
Experiments were conducted to investigate the combustion and emission characteristics of a diesel engine with addition of hydrogen or methane for dual-fuel operation, and mixtures of hydrogen–methane for tri-fuel operation. The in-cylinder pressure and heat release rate change slightly at low to medium loads but increase dramatically at high load owing to the high combustion temperature and high quantity of pilot diesel fuel which contribute to better combustion of the gaseous fuels. The performance of the engine with tri-fuel operation at 30% load improves with the increase of hydrogen fraction in methane and is always higher than that with dual-fuel operations. Compared with ULSD–CH4 operation, hydrogen addition in methane contributes to a reduction of CO/CO2/HC emissions without penalty on NOx emission. Dual-fuel and tri-fuel operations suppress particle emission to the similar extent. All the gaseous fuels reduce the geometry mean diameter and total number concentration of diesel particulate. Tri-fuel operation with 30% hydrogen addition in methane is observed to be the best fuel in reducing particulate and NOx emissions at 70 and 90% loads.  相似文献   

19.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   

20.
生物制气-柴油双燃料发动机燃烧及排放分析   总被引:1,自引:0,他引:1  
采用气化炉热解气化各种农林废弃的生物质,得到可燃生物制气。将柴油机改制成双燃料发动机,用生物制气作为主要燃料,由柴油引燃。测量生物制气-柴油双燃料发动机在最大扭矩转速时的气缸压力及废气排放,分析燃烧特性及对排放物生成的影响,并对比分析柴油机与双燃料发动机的差别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号