首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to delineate the unsteady fluid dynamics of the high-pressure hydrogen jet to clarify the relationship between the forced ignition position and the flame development characteristics in a high-pressure hydrogen jet leaking from a pinhole. The Navier–Stokes equation for a compressible multi-component gas was used to simulate a high-pressure (82 MPa stagnation pressure) unsteady hydrogen jet ejected into the atmosphere through a pinhole (diameter = 0.2 mm). The results indicated that the flapping jet at the base of the jet formed a cloud of highly concentrated hydrogen that flowed downstream. A correlation was observed between the spatio-temporal distribution of hydrogen concentration and velocity was observed. The unsteady high-pressure hydrogen jet obtained by simulation will be used in subsequent studies focusing on flame development under forced ignition.  相似文献   

2.
Experiments on flame propagation regimes in a turbulent hydrogen jet with velocity and hydrogen concentration gradients have been performed. Horizontal stationary hydrogen jets released at normal and cryogenic temperatures of 290, 80 and 35 K with different nozzle diameters and mass flow rates have been investigated. Sampling probe method and laser PIV techniques have been used to evaluate the distribution of hydrogen concentration and flow velocity. High-speed photography combined with a Background Oriented Schlieren (BOS) system was used for the visual observation of the turbulent flame propagation. In order to investigate different flame propagation regimes the ignition position was changed along the jet axis. It was found that the flame propagates in both directions, up- and downstream of the jet flow if hydrogen concentration is >11%, whereas in case [H2] < 11%, the flame propagates only downstream. This means that at normal temperature the flame is able to accelerate effectively only if the expansion ratio σ of the H2-air mixture is higher than a critical value σ* = 3.75 defined for a closed geometry.  相似文献   

3.
The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet fires or explosions may take place. In this paper, a high speed camera was used to investigate the ignition kernel development, ignition probability and flame propagation along the axis of hydrogen jets, which leaked from a 3-mm-internal-diameter nozzle and were ignited by an electric spark. Experimental results indicate that for successful ignition events, the ignition delay time increases with an increase of the distance between the nozzle and the electrode. Ignitable zone of the hydrogen jets is underestimated if using the predicted hydrogen concentration along the jets centerline. The average rate of downstream flame decreases but that of the upstream flame increases with the electrode going far from the nozzle.  相似文献   

4.
With the growing number of hydrogen-powered cars and hydrogen filling stations, it is essential to have accurate and reliable engineering models for this infrastructure. The length of a hydrogen jet flame resulting from a high pressure release will have an impact on its consequences. This work examined the effect that nozzle geometry has on hydrogen jet flame length. The geometry was modified by varying the diameter of the spouting nozzle downstream from the choked nozzle upstream. These experimental results were compared with an existing model for estimating jet flame length. Sensors upstream from the complex nozzle geometry measured the temperature, mass flow rate, and pressure for the released hydrogen. A high-speed camera recorded the hydrogen jet flame at a stable pressure and mass flow. Flame lengths were determined with an image processing tool used to analyze the high-speed video for each experiment. By analyzing the dataset with the image processing tool, the jet flame length distribution, minimum and maximum jet flame length, and the jet flame length standard deviation could be computed. Results showed that the nozzle geometry can increase the jet flame length by 62% compared to a single nozzle configuration with equal mass flow rate. With the upstream nozzle as input, the smallest average relative deviation from previously published models was 13%. The discharge coefficients for different nozzles were calculated and presented.  相似文献   

5.
An experimental study was conducted to research the mechanism of spontaneous ignition induced by high-pressure hydrogen release through tubes with a diameter of 10 mm and varying lengths from 0.3 to 3 m. The pressure and light signals inside the tube were collected. The propagation of shock wave inside and outside the tube was also systematically investigated. The development process of the jet flame in the atmosphere was completely recorded, and the multiple Mach disks at the tube exit were observed by using a high-speed camera. The results show that the minimum release pressure, at which the jet flame is formed, is found to be 3.87 MPa with the tube length of 1.7 m. When the tube length was longer than 1.7 m, the critical pressure for forming jet flame increased rapidly. The velocity attenuation of the shock wave is mainly affected by the burst pressure but not sensitive to the tube length, and the flame propagates in the tube at a slower velocity than the shock wave. The compression of the hydrogen-air mixture by the Mach disk causes it to burn more violently after passing through the Mach disk. It is confirmed that the flame at the tube exit is lifted in the atmosphere, then a jet flame initiates behind the second Mach disk.  相似文献   

6.
基于光学定容燃烧弹试验平台,通过高速纹影摄像系统在相同甲烷燃料初始温度、压力及混合气浓度下,定量分析了不同结构预燃室湍流射流点火(turbulent jet ignition,TJI)的燃烧特性,包括火焰传播速度、火焰面积、火焰形态及燃烧压力等参数。研究结果表明,预燃室孔径越小,相同时间内火焰传播得越远,火焰传播速度和火焰面积增长速度越快,燃烧压力峰值越高。随着预燃室孔径减小,着火机理会由射流中带有火焰的火焰点火转变为火焰过孔时熄灭的喷射点火。喷射点火着火时刻延迟,初始火焰速度减慢,但燃烧压力峰值受影响不大。多级加速预燃室压力升高率与压力峰值与单孔预燃室相比变化不大。虽然火焰出口时速度较慢,但是火焰出口时刻提前且速度衰减较弱,因此多级加速预燃室火焰速度在短时间内超过单孔预燃室,并且压力和火焰面积也更早达到最大值。  相似文献   

7.
Hydrogen gas concentrations and jet velocities were measured downstream by a high response speed flame ionization detector and PIV (Particle Image Velocimetry) in order to investigate the characteristics of dispersion and ignitability for 40–82 MPa high-pressurized hydrogen jet discharged from a nozzle with 0.2 mm diameter. The light emitted from both OH radical and water vapor species yielded from hydrogen combustion, ignited by an electric spark, were recorded by two high speed cameras. From the results, the empirical formula concerning the relationships for time-averaged concentrations, concentration fluctuations and ignition probability were obtained to suggest that they would be independent of hydrogen discharge pressure.  相似文献   

8.
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature, velocity, turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.  相似文献   

9.
The stability characteristics of attached hydrogen (H2) and syngas (H2/CO) turbulent jet flames with coaxial air were studied experimentally. The flame stability was investigated by varying the fuel and air stream velocities. Effects of the coaxial nozzle diameter, fuel nozzle lip thickness and syngas fuel composition are addressed in detail. The detachment stability limit of the syngas single jet flame was found to decrease with increasing amount of carbon monoxide in the fuel. For jet flames with coaxial air, the critical coaxial air velocity leading to flame detachment first increases with increasing fuel jet velocity and subsequently decreases. This non-monotonic trend appears for all syngas composition herein investigated (50/50 → 100/0% H2/CO). OH chemiluminescence imaging was performed to qualitatively identify the mechanisms responsible for the flame detachment. For all fuel compositions, local extinction close to the burner rim is observed at lower fuel velocities (ascending stability limit), while local flame extinction downstream of the burner rim is observed at higher fuel velocities (descending stability limit). Extrema of the non-monotonic trends appear to be identical when the nozzle fuel velocity is normalized by the critical fuel velocity obtained for the single jet cases.  相似文献   

10.
Characteristics of high-pressure hydrogen jet flames resulting from ignition of hydrogen discharge during the bonfire test of composite hydrogen storage vessels are studied. Firstly, a 3-D numerical model is established based on the species transfer model and SST k − ω turbulence model to study the high-pressure hydrogen jet flow. It is revealed that under-expanded jets are formed after the high-pressure hydrogen discharging from the vessel. Secondly, the mathematical methods are adopted to study the high-pressure hydrogen jet flames. The effects of pressure, initial temperature and the nozzle diameter on the jet flames are investigated. The results show that the jet flame length increases with the increase of discharge pressure, but decreases with the increase of nozzle diameter and temperature difference between the filling hydrogen temperature and the environment temperature. Finally, the simulation models are established to study the characteristics of hydrogen jet flames in an open space. The effects of barrier walls on the distribution of jet flames are also studied. The results show that the barrier walls can greatly reduce the damage from hydrogen jet flames to testers and properties around.  相似文献   

11.
A series of experiments were conducted to study the pressure and combustion characteristics of the high-pressure hydrogen during the occurrence of spontaneous ignition and the conversion from spontaneous ignition to a jet fire and explosion. Different initial conditions including release pressure (4–10 MPa), tube diameter (10/15 mm), and tube length (0.3/0.7/1.2/1.7/2.2/3 m) were tested. The variation of the pressure and flame signal inside and outside of the tube and the development of the jet flame were recorded. The experimental results revealed that the minimum ignition pressure required for self-ignition of hydrogen at different tube diameters decreased first and then increased with the extension of tubes. The minimum ignition pressure for tubes diameters of 10 mm and 15 mm is no more than 4 MPa and the length of the tubes is L = 1.7 m. The minimum release pressure required for spontaneous ignition of a tube D = 15 mm is always lower than that of a tube D = 10 mm at the same tube length. When the spontaneous ignition occurred, it did not absolutely trigger the jet fire. The transition from spontaneous ignition to a jet fire must go through the specific stages.  相似文献   

12.
Self-ignition behaviour of highly transient jets from hydrogen high pressure tanks were investigated up to 26 MPa. The jet development and related ignition/combustion phenomena were characterized by high speed video techniques and time resolved spectroscopy. Video cross correlation method BOS, brightness subtraction and 1-dimensional image contraction were used for data evaluation. Results gained provided information on ignition region, flame head jet velocity, flame contours, pressure wave propagation, reacting species and temperatures. On burst of the rupture disc, the combustion of the jet starts close to the nozzle at the boundary layer to the surrounding air. Combustion velocity decelerated in correlation to an approximated drag force of constant value which was obtained by analysing the head velocity. The burning at the outer jet layer develops to an explosion converting to a nearly spherical volume at the jet head; the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated by assuming an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The combustion process is composed of shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume.  相似文献   

13.
The self-ignition of hydrogen released from a high-pressure tank using extension tubes (2200 mm) with different diameters was studied. The processes of flame transition at a nozzle and jet flame development were characterized using a high-speed camera. The results indicated that the intensity of a shockwave and the Mach number decay faster in a 10-mm-diameter tube than that in a 15-mm-diameter tube. The pressure in a 15-mm-diameter tube was weaker than that in the 10-mm-diameter tube at the initial stage; however, it became higher in the later stage. Spontaneous ignition was more likely to happen in a 15-mm-diameter tube. The formation of a stabilized flame at the tube exit and Mach disk were observed during the transition of the flame to a jet fire. The stabilized flame showed a triangular shape because of the influence of a Prandtl–Meyer flow when a hydrogen jet entered a suddenly expanding environment. The formation and separation of a spherical flame were recorded during jet flame development. Large vortexes were formed in front of the flame because of the Kelvin–Helmholtz instability, which resulted in the separation of the spherical flame. The vortexes stopped rotating until the separated flame disappeared.  相似文献   

14.
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure, the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure, wall deflection, radiative heat flux, and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers, computations of the thermal radiation field around barriers, predicted overpressure from ignition, and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.  相似文献   

15.
《Combustion and Flame》1985,59(2):177-187
Ignition and burning mechanisms of the main chamber mixture by a torch jet were experimentally investigated using a divided chamber bomb. The effects of the nozzle diameter and volume ratio on the structure of the torch jet, ignition process, and subsequent burning process in the main chamber were minutely examined, in both uniform and stratified charges, by measurements of ion current, light emission, OH-emission (306.4 nm), initial torch jet velocity, and main chamber pressure histories and by schlieren photography. The structure of the torch jet was greatly influenced by the nozzle diameter and volume ratio independently of the main chamber mixture ratio. According to the physical and chemical characteristics obtained for it, the structure of the torch jet could be classified into four types, and the ignition and burning processes in the main chamber could also be classified into four patterns depending on the torch jet structure: pattern I, chemical chain ignition and well-dispersed burning; pattern II, composite ignition and well-dispersed burning followed by wrinkled laminar burning; pattern III, flame kernel torch ignition and wrinkled laminar burning; and pattern IV, flame front torch ignition and wrinkled laminar burning. Combustion characteristics such as main chamber pressure and net burning time in the main chamber also showed their own peculiar features. Examination of the lean flammability limit gave a possibility of lean burning outside of the normal flammability limit by using divided chamber systems. From these results combustion pattern II was found to be most favorable for lean burning.  相似文献   

16.
This study examines the flame evolution of autoigniting H2 jets with high-speed schlieren and OH1 chemiluminescence optical methods in a constant-volume combustion chamber over a wide range of simulated compression-ignition engine conditions. Parametric variations include the injector nozzle orifice diameter (0.31–0.83 mm), injection reservoir pressure (100–200 bar), ambient temperature (1000–1140 K), density (12.5–24 kg/m3) and O2 concentration (10–21 vol.%). The jet ignition delay was found to be highly sensitive to changes in ambient temperature while all other parameter variations resulted in minor ignition delay changes. Optical imaging reveals that in most cases, the reaction front of the H2 jet initiates from a localised kernel, before engulfing the entire jet volume downstream and recessing towards the nozzle. The flames attach to the nozzle, except at the lowest ambient oxygen condition of 10 vol.% O2 for which a lifted flame is observed. The H2 diffusion flame length shows a dependence on both the mass flow rate and the level of O2 entrainment that follows the same correlations as previously established for atmospheric H2 jet flames.  相似文献   

17.
Reliable methods are needed to predict ignition boundaries that result from compressed hydrogen bulk storage leaks without complex modeling. To support the development of these methods, a new high-pressure stagnation chamber has been integrated into Sandia National Laboratories’ Turbulent Combustion Laboratory so that relevant compressed gas release scenarios can be replicated. For the present study, a jet with a 10:1 pressure ratio issuing from a small 0.75 mm radius nozzle has been examined. Jet exit shock structure was imaged by Schlieren photography, while quantitative Planar Laser Rayleigh Scatter imaging was used to measure instantaneous hydrogen mole fractions downstream of the Mach disk. Measured concentration statistics and ignitable boundary predictions compared favorably to analytic reconstructions of downstream jet dispersion behavior. Model results were produced from subsonic jet dispersion models and by invoking self-similarity jet scaling arguments with length scaling by experimentally measured effective source radii. Similar far field reconstructions that relied on various notional nozzle models to account for complex jet exit shock phenomena failed to satisfactorily predict the experimental findings. These results indicate further notional nozzle refinement is needed to improve the prediction fidelity. Moreover, further investigation is required to understand the effect of different pressure ratios on measured virtual origins used in the jet dispersion model.  相似文献   

18.
Flame propagation across a single perforated plate was experimentally studied in a square cross-section channel. Experiments were performed in premixed hydrogen-air mixture with different equivalence ratios and initial pressures, aiming at identifying the parametric influence. High-speed schlieren photography and pressure records were used to capture the flame front and obtain the pressure build-up. Four stages for the flame front crossing the perforated plate were obtained, namely, laminar flame, jet flame, turbulent flame and secondary flame front. Following ignition, a laminar flame was obtained, which was nearly not affected by the confinement. This laminar flame was squeezed to pass through the perforated plate, producing the jet flame with a step change on velocity. Turbulent flame was generated by merging the jets, which facilitated the acceleration of the flame front. Secondary flame front induced by Rayleigh-Taylor instability was clearly observed in the process of the turbulent front moving forward. Both velocity and pressure are enhanced in this stage. Parametric studies suggested that the secondary flame front is more obvious in the stoichiometric mixture with higher initial pressure, and characterized by a faster propagation velocity and a bigger pressure rise.  相似文献   

19.
The influence of different ignition positions and hydrogen volume fractions on the explosion characteristics of syngas is studied in a rectangular half-open tube. Three ignition positions were set at the axis of the tube, which are 0 mm, 600 mm and 1100 mm away from the closed end, respectively. A range of hydrogen volume fraction (φ) from 10% to 90% were concerned. Experimental results show that different ignition positions and hydrogen volume fraction have important influence on flame propagation structure. When ignited at 600 mm from the closed end on the tube axis, distorted tulip flame forms when flame propagates to the closed end. The formations of the tulip flame and the distorted tulip flame are accompanied by a change in the direction of the flame front propagation. The flame propagation structure and pressure are largely affected by the ignition position and the hydrogen volume fraction. At the same ignition position, flame propagation speed increases with the growing of hydrogen volume fraction. And the pressure oscillates more severe as the ignition location is closer to the open end. And pressure oscillations bring two different forms. The first form is that the pressure has a periodic oscillation. The amplitude of the pressure oscillation gradually increases. It takes several cycles from the start of the oscillation to the peak. For the second form, the pressure reaches the peak of the oscillation in the first cycle of the start to the oscillation.  相似文献   

20.
By utilizing a newly designed constant volume combustion bomb (CVCB), turbulent flame combustion phenomena are investigated using hydrogen–air mixture under the initial pressures of 1 bar, 2 bar and 3 bar, including flame acceleration, turbulent flame propagation and flame–shock interaction with pressure oscillations. The results show that the process of flame acceleration through perforated plate can be characterized by three stages: laminar flame, jet flame and turbulent flame. Fast turbulent flame can generate a visible shock wave ahead of the flame front, which is reflected from the end wall of combustion chamber. Subsequently, the velocity of reflected shock wave declines gradually since it is affected by the compression wave formed by flame acceleration. In return, the propagation velocity of turbulent flame front is also influenced. The intense interaction between flame front and reflected shock can be captured by high-speed schlieren photography clearly under different initial pressures. The results show that the propagation velocity of turbulent flame rises with the increase of initial pressure, while the forward shock velocities show no apparent difference. On the other hand, the reflected shock wave decays faster under higher initial pressure conditions due to the faster flame propagation. Moreover, the influence of initial pressure on pressure oscillations is also analyzed comprehensively according to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号