首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the industrial application of syngas, the explosion accident caused by it has gradually become a topic of concern for researchers. In this paper, the effects of CO2 addition on the deflagration characteristics of syngas-air premixed mixtures were investigated through experiments and numerical simulations. Experiments were carried out inside a T-pipeline, using a high-speed camera and a pressure sensor to simultaneously record the flame evolution and pressure dynamics during deflagration. Simulations were calculated using the GRI 3.0 mechanism by Chemkin Premix Code. The results show that the addition of CO2 has a certain inhibitory effect on the flame propagation, which can make the finger flame in the vertical pipe evolve into a “tulip” flame. And under the inhibition of CO2, the deflagration overpressure of the mixture is reduced, and the number of H, O, OH radicals is also greatly reduced, and the chemical reaction rate is correspondingly slowed down.  相似文献   

2.
The laminar burning velocities and Markstein lengths for the dissociated methanol–air–diluent mixtures were measured at different equivalence ratios, initial temperatures and pressures, diluents (N2 and CO2) and dilution ratios by using the spherically outward expanding flame. The influences of these parameters on the laminar burning velocity and Markstein length were analyzed. The results show that the laminar burning velocity of dissociated methanol–air mixture increases with an increase in initial temperature and decreases with an increase in initial pressure. The peak laminar burning velocity occurs at equivalence ratio of 1.8. The Markstein length decreases with an increase in initial temperature and initial pressure. Cellular flame structures are presented at early flame propagation stage with the decrease of equivalence ratio or dilution ratio. The transition positions can be observed in the curve of flame propagation speed to stretch rate, indicating the occurrence of cellular structure at flame fronts. Mixture diluents (N2 and CO2) will decrease the laminar burning velocities of mixtures and increase the sensitivity of flame front to flame stretch rate. Markstein length increases with an increase in dilution ratio except for very lean mixture (equivalence ratio less than 0.8). CO2 dilution has a greater impact on laminar flame speed and flame front stability compared to N2. It is also demonstrated that the normalized unstretched laminar burning velocity is only related to dilution ratio and is not influenced by equivalence ratio.  相似文献   

3.
The effects of different initial temperatures (T = 300–500 K) and different hydrogen volume fractions (5%–20%) on the combustion characteristics of premixed syngas/air flames in rectangular tubes were investigated experimentally. A high-speed camera and pressure sensor were used to obtain flame propagation images and overpressure dynamics. The CHEMKIN-PRO model and GRI Mech 3.0 mechanism were used for simulation. The results show that the flame propagation speed increases with the initial temperature before the flame touches the wall, while the opposite is true after the flame touches the wall. The increase in initial temperature leads to the increase in overpressure rise rate in the early flame propagation process, but the peak overpressure is reduced. The laminar burning velocity (LBV) and adiabatic flame temperature (AFT) increase with increasing initial temperature. The increase in initial temperature makes the peaks of H, O, and OH radicals increase.  相似文献   

4.
The laminar burning velocities of biogas-hydrogen-air mixture at different fuel compositions and equivalence ratios were determined and studied using the spherical flame method. The combined effects of H2 and CO2 on the laminar burning velocity were investigated quantitatively based on the kinetic effects and the thermal effects. The results show that the laminar burning velocities of the BG40, BG50 and BG60 are increased almost linearly with the H2 addition owing to the improved fuel kinetics and the increased adiabatic flame temperature. The dropping trend of laminar burning velocity from the BG60-hydrogen to the BG40-hydrogen is primarily attributed to the decreased adiabatic flame temperature (thermal effects). The GRI 3.0 mechanism can predict the laminar burning velocity of biogas-hydrogen mixture better than the San Diego mechanism in this study. Whereas, the GRI mechanism still needs to be modified properly for the hydrogen-enriched biogas as the CO2 proportion exceeds 50% in the biogas at the fuel-rich condition. The increased CO2 exerts the stronger suppression on the net reaction rate of H + O2=OH + O than that of H + CH3(+M) = CH4(+M), which contributes to that the rich-shift of peak laminar burning velocity of biogas-hydrogen mixture requires higher H2 addition as the CO2 content is enhanced. For the biogas-hydrogen fuel, the H2 addition decreases the flame stability of biogas fuel effectively due to the increased diffusive-thermal instability and hydrodynamic instability. The improved flame stability of biogas-hydrogen fuel with the increased CO2 content is resulted from the combined effects of diffusive-thermal instability and hydrodynamic instability.  相似文献   

5.
The explosion behavior of syngas/air mixtures under the effect of N2 and CO2 addition is experimentally investigated in three cases of N2 and CO2 volume fractions (0, 20% and 40%). Tests are performed for syngas/air mixtures with varying equivalent ratios (from 0.8 to 2.5) and hydrogen fractions (from 25% to 75%). The effects of N2 and CO2 addition on flame structure evolution, flame speed and overpressure histories are analyzed. The results showed that the tulip shaped flames appear in all cases regardless of whether N2 and CO2 are added. After flame inversion, the appearance of tulip shaped flame distortion can be observed in syngas/air without N2 and CO2 addition and meanwhile the oscillations are seen in the flame front position and speed trajectories. The flame distortion becomes less pronounced with N2 and CO2 addition, and the oscillation amplitude of the flame front position and speed reduce accordingly. Both addition of N2 or CO2 decrease the flame speed and the maximum overpressure. Therefore, it increases the time required for flame arriving to the discharge vent. Whereas CO2 has evidently better inhibition performance for syngas/air explosion.  相似文献   

6.
Laminar burning velocities of CO–H2–CO2–O2 flames were measured by using the outwardly spherical propagating flame method. The effect of large fraction of hydrogen and CO2 on flame radiation, chemical reaction, and intrinsic flame instability were investigated. Results show that the laminar burning velocities of CO–H2–CO2–O2 mixtures increase with the increase of hydrogen fraction and decrease with the increase of CO2 fraction. The effect of hydrogen fraction on laminar burning velocity is weakened with the increase of CO2 fraction. The Davis et al. syngas mechanism can be used to calculate the syngas oxyfuel combustion at low hydrogen and CO2 fraction but needs to be revised and validated by additional experimental data for the high hydrogen and CO2 fraction. The radiation of syngas oxyfuel flame is much stronger than that of syngas–air and hydrocarbons–air flame due to the existence of large amount of CO2 in the flame. The CO2 acts as an inhibitor in the reaction process of syngas oxyfuel combustion due to the competition of the reactions of H + O2 = O + OH, CO + OH = CO2 + H and H + O2(+M) = HO2(+M) on H radical. Flame cellular structure is promoted with the increase of hydrogen fraction and is suppressed with the increase of CO2 fraction due to the combination effect of hydrodynamic and thermal-diffusive instability.  相似文献   

7.
The laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas in a wide equivalence ratio range (0.6–5) and initial temperature (298–423 K) was studied by Bunsen burner. The results show that the laminar flame speed first increases and then decreases as the equivalence ratio increasing, which is a maximum laminar flame speed at n = 2. The laminar flame speed increases exponentially with the increase of initial temperature. For different equivalent ratios, the initial temperature effects on the laminar flame speed is different. The initial temperature effects for n = 2 (the most violent point of the reaction) is lower than others. It is found that H, O and OH are affected more and more when the equivalence ratio increase. When the equivalence ratio is far from 2, the reaction path changes, and the influence of initial temperature on syngas combustion also changes. The laminar flame speed of syngas is more severely affected by H + O2 = O + OH and CO + OH = CO2 + H than others, which sensitivity coefficient is larger and change more greatly than others when the initial temperature and equivalence ratio change. Therefore, the laminar flame speed of syngas/air premixed gas is affected by the initial temperature and equivalence ratio. A new correlation is proposed to predict the laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas under the synergistic effect of equivalence ratio and initial temperature (for equivalence ratios of 0.6–5, the initial temperature is 298–423 K).  相似文献   

8.
The objective of this study is to investigate the impact of syngas composition by varying the H2/CO ratio (1:3, 1:1, and 3:1 by volume), the CO2 dilution (0%–40%), and methane addition (0%–40%) on laminar flame speed. Thus, laminar flame speeds of premixed syngas–air mixtures were measured for different equivalence ratios (0.8–2.2) and inlet temperatures (295–450 K) using the Bunsen-burner method. It was found that laminar flame speed increases with increasing H2/CO ratio, while CO2 dilution or CH4 addition decreased it. The location of the maximum flame speed shifts to richer mixtures with decreasing H2/CO ratio, while it shifts to leaner mixtures with the addition of CH4 due to its inherent slower flame speed. The location of the maximum flame speed is also shifted towards leaner mixtures with the addition of CO2 due to the preponderance of the reduction of the adiabatic flame temperature with increasing dilution. Comparison between experimental and numerical results shows a better agreement using a modified mechanism derived from GRI-Mech 3.0. A correlation, based on the experimental results, is proposed to calculate the laminar flame speed over a wide range of equivalence ratios, inlet temperatures, and fuel content.  相似文献   

9.
In this study, effect of carbon dioxide dilution on explosive behavior of syngas/air mixture was investigated numerically and experimentally. Explosion in a 3-D cylindrical geometry model with dimensions identical to the chamber used in the experiment was simulated using ANSYS Fluent. The simulated results showed that after ignition, the flame front propagated outward spherically until it touched the wall, like the propagating flame observed in the experiment. Both experimental and simulated results presented a same trend of decreasing the maximum explosion pressure and prolonging the explosion time with CO2 dilution. The results showed that for CO2 additions, the maximum explosion pressure decreased linearly and the explosion time increased linearly, while the maximum rate of pressure rise decreased nonlinearly, which can be correlated to an exponential equation. In addition, both results showed a good agreement for syngas/air flame with CO2 addition up to 20% in volume. However, larger discrepancies were observed for higher levels of CO2 dilutions. Of the three diluents tested, carbon dioxide displayed the strongest effect in reducing explosion hazard of syngas/air flame compared to helium and nitrogen. Chemical kinetic analysis results showed that maximum concentration of major radicals and net reaction rates of important reactions drastically decreased with CO2 addition, causing a reduction of laminar flame speed.  相似文献   

10.
Numerical simulations are performed to study the flame propagation of laminar stratified syngas/air flames with the San Diego mechanism. Effects of fuel stratification, CO/H2 mole ratio and temperature stratification on flame propagation are investigated through comparing the distribution of flame temperature, heat release rate and radical concentration of stratified flame with corresponding homogeneous flame. For stratified flames with fuel rich-to-lean and temperature high-to-low, the flame speeds are faster than homogeneous flames due to more light H radical in stratified flames burned gas. The flame speed is higher for case with larger stratification gradient. Contrary to positive gradient cases, the flame speeds of stratified flames with fuel lean-to-rich as well as with temperature low-to-high are slower than homogeneous flames. The flame propagation accelerates with increasing hydrogen mole ratio due to higher H radical concentration, which indicates that chemical effect is more significant than thermal effect. Additionally, flame displacement speed does not match laminar flame speed due to the fluid continuity. Laminar flame speed is the superposition of flame displacement speed and flow velocity.  相似文献   

11.
The propagation behaviour of a deflagration premixed syngas/air flame over a wide range of equivalence ratios is investigated experimentally in a closed rectangular duct using a high-speed camera and pressure transducer. The syngas hydrogen volume fraction, φ, ranges from 0.1 to 0.9. The flame propagation parameters such as flame structure, propagation time, velocity and overpressure are obtained from the experiment. The effects of the equivalence ratio and hydrogen fraction on flame propagation behaviour are examined. The results indicate that the hydrogen fraction in a syngas mixture greatly influences the flame propagation behaviour. When φ, the hydrogen fraction, is ≥0.5, the prominently distorted tulip flame can be formed in all equivalence ratios, and the minimum propagation time can be obtained at an equivalence ratio of 2.0. When φ < 0.5, the tulip flame distortion only occurs in a hydrogen fraction of φ = 0.3 with an equivalence ratio of 1.5 and above. The minimum flame propagation time can be acquired at an equivalence ratio of 1.5. The distortion occurs when the maximum flame propagation velocity is larger than 31.27 m s?1. The observable oscillation and stepped rise in the overpressure trajectory indicate that the pressure wave plays an important role in the syngas/air deflagration. The initial tulip distortion time and the plane flame formation time share the same tendency in all equivalence ratios, and the time interval between them is nearly constant, 4.03 ms. This parameter is important for exploring the quantitative theory or models of distorted tulip flames.  相似文献   

12.
The effects of low pressure on the laminar burning velocity and flame stability of H2/CO mixtures and equimolar H2/CO mixtures diluted with N2 and CO2 were studied experimentally and theoretically. Experiments were conducted at real sub-atmospheric conditions in three places located at high altitudes 500 m.a.s.l. (0.947 atm), 1550 m.a.s.l. (0.838 atm), and 2300 m.a.s.l. (0.767 atm). Flames were generated using contoured slot-type nozzle burners and Schlieren images were used to determine the laminar burning velocity with the angle method. The behavior of the laminar burning velocity at low pressures depends on the equivalence ratio considered; it decreases at lean and very rich equivalence ratios when pressure is increased. However, a contrary behavior was obtained at equivalence ratios corresponding to the highest values of the laminar burning velocity, where it increases as pressure increases. Numerical calculations were also conducted using a detailed reaction mechanism, and these do not reproduce the behavior obtained experimentally; a sensitivity analysis was carried out to examine the differences found. At lean equivalence ratios, flame instabilities were observed for all the syngas mixtures. The range of equivalence ratios where flames are stable increases at lower pressures. This behavior is due to the increase of the flame thickness, which considerably reduces the hydrodynamic instabilities in the flame front.  相似文献   

13.
The self-acceleration characteristics of a syngas/air mixture turbulent premixed flame were experimentally evaluated using a 10% H2/90% CO/air mixture turbulent premixed flame by varying the turbulence intensity and equivalence ratio at atmospheric pressure and temperature. The propagation characteristics of the turbulent premixed flame including the variation in the flame propagation speed and turbulent burning velocity of the syngas/air mixture turbulent premixed flame were evaluated. In addition, the effect of the self-acceleration characteristics of the turbulent premixed flame was also evaluated. The results show that turbulence gradually changes the radius of the premixed flame from linear growth to nonlinear growth. With the increase of turbulence intensity, the formation of a cellular structure of the flame front accelerated, increasing the flame propagation speed and burning speed. In the transition stage, the acceleration exponent and fractal excess of the turbulent premixed flame decreased with increasing equivalence ratio and increased with increasing turbulence intensity at an equivalence ratio of 0.6. The acceleration exponent was always greater than 1.5.  相似文献   

14.
The possibility is analysed of a laminar flame accelerating along a cylindrical tube, closed at one end, and inducing a deflagration to detonation transition in a stoichiometric H2/O2 mixture. The pressure and temperature ratios at the ensuing shock wave increase, as do laminar burning velocities, while autoignition delay times decrease. Combined with appreciable elongation of the flame, these enhance the strength of the shock. The conditions necessary for delay times of 0.05, 0.1, 1.0 and 5.0 ms, at an unburned mixture critical Reynolds number of 2300, are computed for different tube diameters. Probable consequences of the different delay times and hot spot reactivity gradients, including detonation, are all considered. The probability of a purely laminar propagation leading to a detonation is marginal. Only when the initial temperature is raised to 375 K, do purely laminar detonations become possible in tubes of between about 0.5 and 1.35 mm diameter.  相似文献   

15.
This work describes an experimental study of the effect of hydrogen addition on the stabilization characteristics of laminar biogas diffusion flame. The focus is to identify and compare various factors influencing the blowoff process. Three compositions of biogas, BG40, BG50 and BG60 were considered and the amount of hydrogen added was varied from 5% to 25% of the biogas by volume.With increasing hydrogen addition, the critical flow velocity beyond which the flame blows off increases faster than the laminar burning velocity (LBV) does, indicating that flame stabilization is not solely dependent on laminar burning velocity. An exponential relationship is observed between LBV and flame propagation speed. Therefore, both flame propagation speed and LBV, together with other factors, contribute to flame stabilization. The reason for no stable lift for either biogas or H2-biogas flame is analyze by Schmidt number calculation, and the results agree with the literature. Also found is that hydrogen added to biogas accelerates the fuel mass diffusion, which may play an important role for stabilization of the nozzle-attached flame.The CO2-C3H8 and BG60 flames were compared to exclude the possible dominant role played by insufficient heat release and/or excessive heat loss due to CO2 present in biogas. Tested on varied-size burners show that flame stabilization depends on burner pore size, where larger diameter allows better flame stability. The universal equation for predicting blowout/blowoff velocity in the literature was found to be invalid for H2-enriched biogas flame and a new scaling law was put forwards.  相似文献   

16.
The effect of CO2/N2/CH4 dilution on NO formation in laminar coflow H2/CO syngas diffusion flames was experimentally and numerically investigated. The results reveal that the NO emission index increases with H2/CO mole ratio. In all cases, CO2/N2/CH4 dilution can reduce the peak temperature of syngas flame and have the ability to reduce peak flame temperature is decreased in the following order: CO2>N2>CH4. CO2/N2 dilution reduces the NO formation in syngas flame while CH4 dilution promotes the NO formation. Besides, the dilution of CO2/N2/CH4 can reduce the peak mole fraction of OH and its variations with H2/CO mole ratio and dilution ratio show the same trend as the peak flame temperature variations. The height of the flame with CO2 and N2 dilution increases with dilution ratio. The flame with CH4 dilution becomes higher and wider with the increase of dilution ratio.  相似文献   

17.
The laminar burning velocities of H2–air mixtures diluted with N2 or CO2 gas at high temperatures were obtained from planar flames observed in externally heated diverging channels. Experiments were conducted for an equivalence ratio range of 0.8–1.3 and temperature range of 350–600 K with various dilution rates. In addition, computational predictions for burning velocities and their comparison with experimental results and detailed flame structures have been presented. Sensitivity analysis was carried out to identify important reactions and their contribution to the laminar burning velocity. The computational predictions are in reasonably good agreement with the present experimental data (especially for N2 dilution case). The burning velocity maxima was observed for slightly rich mixtures and this maxima was found to shift to higher equivalence ratios (Ф) with a decrease in the dilution. The effect of CO2 dilution was more profound than N2 dilution in reducing the burning velocity of mixtures at higher temperatures.  相似文献   

18.
An experimental study was conducted using outwardly propagating flame to evaluate the laminar burning velocity and flame intrinsic instability of diluted H2/CO/air mixtures. The laminar burning velocity of H2/CO/air mixtures diluted with CO2 and N2 was measured at lean equivalence ratios with different dilution fractions and hydrogen fractions at 0.1 MPa; two fitting formulas are proposed to express the laminar burning velocity in our experimental scope. The flame instability was evaluated for diluted H2/CO/air mixtures under different hydrogen fractions at 0.3 MPa and room temperature. As the H2 fraction in H2/CO mixtures was more than 50%, the flame became more unstable with the decrease in equivalence ratio; however, the flame became more stable with the decrease in equivalence ratio when the hydrogen fraction was low. The flame instability of 70%H2/30%CO premixed flames hardly changed with increasing dilution fraction. However, the flames became more stable with increasing dilution fraction for 30%H2/70%CO premixed flames. The variation in cellular instability was analyzed, and the effects of hydrogen fraction, equivalence ratio, and dilution fraction on diffusive-thermal and hydrodynamic instabilities were discussed.  相似文献   

19.
Explosion characteristics of premixed syngas-air mixtures at room temperature and atmospheric pressure were experimentally reported when the explosion flame propagates in ducts with various heights (H) and lengths (L). The discussion was based on flame morphology and pressure dynamics. The ratio of L/H and the ratio of H2/CO had a significant effect on the explosion flame behaviors as the explosion occurred in ducts. The structure of the explosion flame changes more drastically, as both the L/H ratio is large. The ratio of L/H affected the flame tip dynamics after the flame reached the duct wall, and the time of flame reaching the duct walls is divinable. For a given duct height, the shorter the duct length is, the faster flame propagates, and the maximum flame tip speed was higher as the duct length was small. For a given duct length, flame tip dynamics showed a nearly same development tendency, but the shorter the duct height, the faster the flame propagated. The venting pressure affected the overpressure dynamics, and the venting pressure increased with the increase of the L/H ratio and the H2/CO. For a given duct height, the overpressure reached the maximum value almost at the same time, and the longer duct length resulted in the greater maximum overpressure. Finally, for a given duct length, the higher duct height caused the higher maximum overpressure.  相似文献   

20.
In recent years, research efforts have been channeled to explore the use of environmentally-friendly clean fuel in lean-premixed combustion so that it is vital to understand fundamental knowledge of combustion and emissions characteristics for an advanced gas turbine combustor design. The current study investigates the extinction limits and emission formations of dry syngas (50% H2-50% CO), moist syngas (40% H2-40% CO-20% H2O), and impure syngas containing 5% CH4. A counterflow flame configuration was numerically investigated to understand extinction and emission characteristics at the lean-premixed combustion condition by varying dilution levels (N2, CO2 and H2O) at different pressures and syngas compositions. By increasing dilution and varying syngas composition and maintaining a constant strain rate in the flame, numerical simulation showed among diluents considered: CO2 diluted flame has the same extinction limit in moist syngas as in dry syngas but a higher extinction temperature; H2O presence in the fuel mixture decreases the extinction limit of N2 diluted flame but still increases the flame extinction temperature; impure syngas with CH4 extends the flame extinction limit but has no effect on flame temperature in CO2 diluted flame; for diluted moist syngas, extinction limit is increased at higher pressure with the larger extinction temperature; for different compositions of syngas, higher CO concentration leads to higher NO emission. This study enables to provide insight into reaction mechanisms involved in flame extinction and emission through the addition of diluents at ambient and high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号