首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors as the Pt/C ratio of the catalyst, the binder content of the electrode and the catalyst deposition method were studied within the scope of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells (HT-PEMFCs). The Pt/C ratio of the catalyst allowed to tune the thickness of the catalytic layer and so to minimize the detrimental effect of the phosphoric acid flooding. A membrane electrode assembly (MEA) with 0.05 mgPtcm−2 at anode and 0.1 mgPtcm−2 at cathode (0.150 mgPtcm−2 in total) attained a peak power density of 346 mW cm−2. It was proven that including a binder in the catalytic layer of ultra-low Pt loading electrodes lowers its performance. Electrospraying-based MEAs with ultra-low Pt loaded electrodes (0.1 mgPtcm−2) rendered the best (peak power density of 400 mW cm−2) compared to conventional methods (spraying or ultrasonic spraying) but with the penalty of a low catalyst deposition rate.  相似文献   

2.
In this study, the effects of Nafion® ionomer content in membrane electrode assemblies (MEAs) of polymer electrolyte membrane (PEM) water electrolyser were discussed. The MEAs were prepared with a catalyst coated membrane (CCM) method. The catalysts inks with Nafion ionomer could form uniform coatings deposited on the membrane surfaces. SEM and area EDX mapping demonstrated that anode catalyst coating was uniformly distributed, with a microporous structure. The contents of Nafion ionomer were optimized to 25% for the anode and 20% for cathode. A current density of 1 A cm−2 was achieved at terminal voltage 1.586 V at 80 °C in a PEMWE single cell, with Nafion 117, Pt/C as cathode, and Ru0.7Ir0.3O2 as anode.  相似文献   

3.
An improved fabrication technique for conventional hot-pressed membrane electrode assemblies (MEAs) with carbon supported cobalt triethylenetetramine (CoTETA/C) as the cathode catalyst is investigated. The V-I results of PEM single cell tests show that addition of glycol to the cathode catalyst ink leads to significantly higher electrochemical performance and power density than the single cell prepared by the traditional method. SEM analysis shows that the MEAs prepared by the conventional hot-pressed method have cracks between the cathode catalyst layer and Nafion membrane, and the contact problem between cathode catalyst layer and Nafion membrane is greatly suppressed by addition of glycol to the cathode catalyst ink. Current density-voltage curve and impedance studies illuminate that the MEAs prepared by adding glycol to the cathode catalyst ink have a higher electrochemical surface area, lower cell ohmic resistance, and lower charge transfer resistance. The effects of CoTETA/C loading, Nafion content, and Pt loading are also studied. By optimizing the preparation parameters of the MEA, the as-fabricated cell with a Pt loading of 0.15 mg cm−2 delivers a maximum power density of 181.1 mW cm−2, and a power density of 126.2 mW cm−2 at a voltage of 0.4 V.  相似文献   

4.
This paper reports use of an ultrasonic spray for producing ultra-low Pt load membrane electrode assemblies (MEAs) with the catalyst coated membrane (CCM) fabrication technique. Anode Pt loading optimization and rough cathode Pt loading were investigated in the first stage of this research. Accurate cathode Pt coating with catalyst ink using the ultrasonic spray method was investigated in the second stage. It was found that 0.272 mgPt/cm2 showed the best observed performance for a 33 wt% Nafion CCM when it was ultrasonically spray coated with SGL 24BC, a Sigracet manufactured gas diffusion layer (GDL). Two different loadings (0.232 and 0.155 mgPt/cm2) exposed to 600 mA/cm2 showed cathode power mass densities of 1.69 and 2.36 W/mgPt, respectively. This paper presents impressive cathode mass power density and high fuel cell performance using air as the oxidant and operated at ambient pressure.  相似文献   

5.
Constructing consecutive proton-conducting nanochannels and optimizing nanophase-separation within proton exchange membrane (PEM) was of guiding significance for improving proton transfer. Metal organic framework (MOF), as a novel and functional material had drawn increasing attention in the research of proton PEM because of its flexible tunability and designability. Herein, a novel MOF-based nanofibrous mats (NFMs) were prepared by the self-assembly of zeolitic imidazole framework-67 (ZIF-67) onto polyacrylonitrile (PAN) NFMs. Subsequently, the ZIF-67 NFMs were incorporated into Nafion matrix to prepare ZIF-67@Nafion composite membrane which aimed at constructing consecutive proton-conducting channels. Especially, the acid–base pairs between N–H (ZIF-67 NFMs) and –SO3H (Nafion) could promote the protonation/deprotonation and subsequent proton leaping via Grotthuss mechanisms. As expected, the ZIF-67@Nafion-5 composite membrane showed a promising proton conductivity of 288 mS/cm at 80 °C and 100% RH, low methanol permeability of 7.98 × 10−7 cm2s−1, and superior power density of 298.68 mW/cm2 at 80 °C and 100% RH. In addition, the resulting composite membrane exhibited considerable enhancement in thermal stability and dimensional stability. This promising strategy provided a valuable reference for designing high-performance PEMs.  相似文献   

6.
High cost and poor durability of Pt-based cathode catalysts for oxygen reduction reaction (ORR) severely hamper the popularization of proton exchange membrane fuel cells (PEMFCs). Tailoring carbon support is one of effective strategies for improving the performance of Pt-based catalysts. Herein, petroleum vacuum residue was used as carbon source, and nitrogen-doped porous carbon (N-PPC) was synthesized using a simple template-assisted and secondary calcination method. Small Pt nanoparticles (Pt NPs) with an average particles size of 1.8 nm were in-situ prepared and spread evenly on the N-PPC. Interestingly, the lattice compression (1.08%) of Pt NPs on the N-PPC (Pt/N-PPC) was clearly observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which was also verified by the shift of (111) crystal plane of Pt on N-PPC to higher angles. The X-ray photoelectron spectroscopy (XPS) results suggest that the N-PPC support had a strong effect on anchoring Pt NPs and endowing surface Pt NPs with lowered d band center. Thus, the Pt/N-PPC as a catalyst simultaneously boosted the ORR activity and durability. The specific activity (SA) and mass activity (MA) of the Pt/N-PPC at 0.9 V reached 0.83 mA cm−2 and 0.37 A mgPt−1, respectively, much higher than those of the commercial Pt/C (0.21 mA cm−2 and 0.11 A mgPt−1) in 0.1 M HClO4. The half-wave potential (E1/2) of Pt/N-PPC exhibited only a minimal negative shift of 7 mV after 30,000 accelerated durability tests (ADT) cycles. More importantly, an H2–O2 fuel cell with a Pt/N-PPC cathode achieved a power density of 866 mW cm−2, demonstrating that the prepared catalyst has a promising application potential in working environment of PEMFCs.  相似文献   

7.
We investigated the effects of the compositions of catalyst layers and diffusion layers on performances of the membrane electrode assemblies (MEAs) for direct dimethyl ether fuel cell. The performances of the MEAs with different thicknesses of Nafion membranes were compared in this work. The optimal compositions in the anode are: 20 wt% Nafion content and 3.6 mg cm−2 Pt loading in the catalyst layer, and 30 wt% PTFE content and 1 mg cm−2 carbon black loading in the diffusion layer. In the cathode, MEA with 20 wt% Nafion content in the catalyst layer and 30 wt% PTFE content in the diffusion layer presented the optimal performance. The MEA with Nafion 115 membrane displayed the highest maximum power density of 46 mW cm−2 among the three MEAs with different Nafion membranes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Membrane electrode assemblies with Nafion/nanosize titanium silicon dioxide (TiSiO4) composite membranes were manufactured with a novel ultrasonic-spray technique and tested in proton exchange membrane fuel cell (PEMFC). Nafion/TiO2 and Nafion/SiO2 nanocomposite membranes were also fabricated by the same technique and their characteristics and performances in PEMFC were compared with Nafion/TiSiO4 mixed oxide membrane. The composite membranes have been characterized by thermogravimetric analysis, scanning electron microscopy, X-ray diffraction, water uptake, and proton conductivity. The composite membranes gained good thermal resistance with insertion of inorganic oxides. Uniform and homogeneous distribution of inorganic oxides enhanced crystalline character of these membranes. Gas diffusion electrodes (GDE) were fabricated by Ultrasonic Coating Technique. Catalyst loading was 0.4 mg Pt/cm2 for both anode and cathode sides. Fuel cell performances of Nafion/TiSiO4 composite membrane were better than that of other membranes. The power density obtained at 0.5 V at 75 °C was 0.456 W cm−2, 0.547 W cm−2, 0.477 W cm−2 and 0.803 W cm−2 for Nafion, Nafion/TiO2, Nafion/SiO2, and Nafion/TiSiO4 composite membranes, respectively.  相似文献   

9.
A copper chloride (CuCl) electrolyzer that constitutes of composite proton exchange membrane (PEM) that functions at medium-temperature (>100 °C) is beneficial for rapid electrochemical kinetics, and better in handling fuel pollutants. A synthesized polybenzimidazole (PBI) composite membrane from the addition of ZrO2 followed with phosphoric acid (PA) is suggested to overcome the main issues in CuCl electrolysis, including the copper diffusion and proton conductivity. PBI/ZrP properties improved significantly with enhanced proton conductivity (3 fold of pristine PBI, 50% of Nafion 117), superior thermal stability (>600 °C), good mechanical strength (85.17 MPa), reasonable Cu permeability (7.9 × 10−7) and high ionic exchange capacity (3.2 × 10−3 mol g−1). Hydrogen produced at 0.5 A cm−2 (115 °C) for PBI/ZrP and Nafion 117 was 3.27 cm3 min−1 and 1.85 cm3 min−1, respectively. The CuCl electrolyzer efficiency was ranging from 91 to 97%, thus proven that the hybrid PBI/ZrP membrane can be a promising and cheaper alternative to Nafion membrane.  相似文献   

10.
Commercial sized (16 × 16 cm2 active surface area) proton exchange membrane (PEM) fuel cells with serpentine flow chambers are fabricated. The GORE-TEX® PRIMEA 5621 was used with a 35-μm-thick PEM with an anode catalyst layer with 0.45 mg cm−2 Pt and cathode catalyst layer with 0.6 mg cm−2 Pt and Ru or GORE-TEX® PRIMEA 57 was used with an 18-μm-thick PEM with an anode catalyst layer at 0.2 mg cm−2 Pt and cathode catalyst layer at 0.4 mg cm−2 of Pt and Ru. At the specified cell and humidification temperatures, the thin PRIMEA 57 membrane yields better cell performance than the thick PRIMEA 5621 membrane, since hydration of the former is more easily maintained with the limited amount of produced water. Sufficient humidification at both the cathode and anode sides is essential to achieve high cell performance with a thick membrane, like the PRIMEA 5621. The optimal cell temperature to produce the best cell performance with PRIMEA 5621 is close to the humidification temperature. For PRIMEA 57, however, optimal cell temperature exceeds the humidification temperature.  相似文献   

11.
Ir and Ir-V nanoparticles were synthesized in ethylene glycol using IrCl3 and NH4VO3 as the Ir and V precursors, respectively. These nanoparticles were evaluated as anode catalysts in proton exchange membrane fuel cells (PEMFCs). A thermal treatment of the catalysts at 200 °C in a reducing atmosphere leads to very high electrocatalytic activity for the hydrogen oxidation reaction. The fuel cell performance reveals an optimal Nafion ionomer content of 25% in the catalyst layer used for the MEA fabrication. The electrocatalytic effects related to the change in the electrocatalyst structure are discussed based on the data obtained by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques are used in-situ to assess the kinetics of hydrogen oxidation on the surface of these catalysts. A maximum power density of 1016.6 mW cm−2 was obtained at 0.598 V and 70 °C with an anode catalyst loading of 0.4 mg (Ir) cm−2. This performance is 50.7% higher than that for commercially available Pt/C catalysts under the same conditions. In addition, we also tested the anode catalyst with a low loading of 0.1 mg (Ir) cm−2, the maximum power density is 33.8% higher than that of the commercial Pt/C catalyst with a loading of 0.4 mg (Pt) cm−2.  相似文献   

12.
《Journal of power sources》2007,173(2):867-876
An improved photographic Pt printing process has been developed, which is called the print-out process (POP). No developer is required in this process and the deposition efficiency was significantly improved by more than 6 times on carbon paper (CP) and 22 times on carbon-black-coated carbon paper (CB/CP) over the previously reported develop-out process (DOP) [1]. The Pt particle size can be easily controlled by varying the moisture content in the substrate and was reduced to 5 nm on blank CP by adding a stabilizing agent, ethylene glycol (EG), to the photo-emulsion. Due to the hydrophobic nature of CB/CP, both Nafion ionomer solution and ethylene glycol (EG) were mixed with the emulsion during the printing. SEM revealed that on this substrate Pt was distributed as ∼25 nm clusters consisting of 5 nm particles on the carbon-black. The mass specific catalytic activity for methanol oxidation of Pt printed on CB/CP by POP was increased five times compared to that of Pt printed by the previous DOP. The performance of the POP Pt in a H2 PEM single fuel cell (5 cm2) was also evaluated. A peak power density of 288 mW cm−2 was achieved with an anode POP Pt catalyst loading of 0.16 mg cm−2 at 70 °C and 0.9 mg cm−2 JM Pt at the cathode. Compared to the DOP Pt catalyst at about the same loading, peak power density was improved more than four times by using the POP Pt.  相似文献   

13.
The influence of Pt: Pd atomic ratios (1:2–1:8) on a carbon support upon its suitability as a cathode for a proton exchange membrane (PEM) fuel cell was evaluated at a constant membrane electrocatalyst loading of 0.15 mg/cm2. The results clearly demonstrated that the different Pt: Pd atomic ratios had a significant effect on both the electrocatalyst activity and also on the performance in a H2/O2 fuel cell. Decreasing the Pt: Pd atomic ratio led to an increase in the particle size of the electrocatalyst but a decrease in the particle dispersion and electrochemical surface area (ESA). With respect to the performance in a PEM fuel cell, decreasing the Pt: Pd atomic ratio led to a decreased exchange current density (j0), electrocatalytic activity and also mass activity (MA), but to an increased total resistance (R) of the cell. The maximum activity of the oxygen reduction reaction (ORR) and the peak power (492 mW/cm2) were obtained with an electrocatalyst with a Pt: Pd atomic ratio of 1:2. Finally, the rotating disk electrode (RDE) analysis showed that the mechanism of oxygen reduction on the prepared Pt–Pd/C electrocatalyst involved a four-electron pathway with high oxygen permeability in the Nafion film.  相似文献   

14.
《Journal of power sources》2006,154(1):138-144
Operating a proton exchange membrane (PEM) fuel cell at elevated temperatures (above 100 °C) has significant advantages, such as reduced CO poisoning, increased reaction rates, faster heat rejection, easier and more efficient water management and more useful waste heat. Catalyst materials and membrane electrode assembly (MEA) structure must be considered to improve PEM fuel cell performance. As one of the most important electrode design parameters, Nafion® content was optimized in the high-temperature electrodes in order to achieve high performance. The effect of Nafion® content on the electrode performance in H2/air or H2/O2 operation was studied under three different operation conditions (cell temperature (°C)/anode (%RH)/cathode (%RH)): 80/100/75, 100/70/70 and 120/35/35, all at atmospheric pressure. Different Nafion® contents in the cathode catalyst layers, 15–40 wt%, were evaluated. For electrodes with 0.5 mg cm−2 Pt loading, cell voltages of 0.70, 0.68 and 0.60 V at a current density of 400 mA cm−2 were obtained at 35 wt% Nafion® ionomer loading, when the cells were operated at the three test conditions, respectively. Cyclic voltammetry was conducted to evaluate the electrochemical surface area. The experimental polarization curves were analyzed by Tafel slope, catalyst activity and diffusion capability to determine the influence of the Nafion® loading, mainly associated with the cathode.  相似文献   

15.
The effect of Ag particle size on oxygen reduction reaction (ORR) at the cathode was investigated in anion exchange membrane direct glycerol fuel cells (AEM-DGFC) with oxygen as an oxidant. At the anode, high purity glycerol (99.8 wt%) or crude glycerol (88 wt%, from soybean biodiesel) was used as fuel, and commercial Pt/C served as the anode catalyst. A solution phase-based nanocapsule synthesis method was successfully developed to prepare the non-precious Ag/C cathode catalyst, with LiBEt3H as a reducing agent. XRD and TEM characterizations show that as-synthesized Ag nanoparticles (NP) with a size of 2–9 nm are well dispersed on the Vulcan XC-72 carbon black support. Commercial Ag nanoparticles with a size of 20–40 nm were also supported on carbon black as a control sample. The results show that higher peak power density was obtained in AEM-DGFC employing an Ag-NP catalyst with smaller particle size: nanocapsule made Ag-NP > commercial Ag-NP (Alfa Aesar, 99.9%). With the nanocapsule Ag-NP cathode catalyst, the peak power density and open circuit voltage (OCV) of AEM-DGFC with high-purity glycerol at 80 °C are 86 mW cm−2 and 0.73 V, respectively. These are much higher than 45 mW cm−2 and 0.68 V for the AEM-DGFC with the commercial Ag/C cathode catalyst, which can be attributed to the enhanced kinetics and reduced internal resistance. Directly fed with crude glycerol, the AEM-DGFC with the nanocapsule Ag-NP cathode catalyst shows an encouraging peak power density of 66 mW cm−2, which shows great potential of direct use of biodiesel waste fuel for electricity generation.  相似文献   

16.
To improve the utilization of platinum and reduce the manufacturing cost of proton exchange membrane fuel cell (PEMFC), the electrostatic spraying was used to prepare the cathode catalyst layer of membrane electrode assembly (MEA) with platinum loading varying from 0.1 to 0.01 mg cm?2. The performance of fuel cell was tested and analyzed by electrochemical impedance and polarization curve. Our results show that the platinum carbon (Pt/C) particles deposited by electrostatic spraying were well dispersed and the microporous structure of catalyst layer (CL) were relatively uniform. Replacing the CCS type MEA (catalyst coated on gas diffusion layer substrate) with the CCM type MEA (catalyst coated on proton exchange membrane) can reduce its electrochemical impedance and improve the power density of fuel cell. Compared to the Pt/C catalyst with a platinum mass fraction of 60%, a lower platinum-carbon ratio catalyst is more conducive to the uniform dispersion of catalyst particles and efficient utilization of platinum in the preparation of MEA with ultra-low platinum loading. However, their difference in peak power density decreases with the increase of platinum loading. Besides, increasing the back pressure can improve the performance of fuel cell, when the back pressure increased to 0.15 Mpa and the feeding gases were set as H2/O2, the peak power density of 0.56 W cm?2 was obtained by the MEA with cathode platinum loading of 0.01 mg cm?2, which is corresponding to the cathode platinum utilization of 56 kW·gPt?1cathode.  相似文献   

17.
The bottlenecks of commercial application of proton exchange membranes (PEM) fuel cell are cost and oxidation stability of PEM. Hence, we encapsulate Resveratrol (Res, a kind of reductant) in hydroxypropyl-β-cyclodextrins (CDs) to prepare the inclusion complexes of Res and CDs (Res@CDs) under the guidance of theoretical arithmetic. Then the Res@CDs are evenly dispersed in Nafion emulsion, which is subsequently combined with porous polytetrafluoroethylene (PTFE) substrate by emulsion pouring method to form the antioxidative composite membrane (Res@CDs-Nafion/PTFE). The as-prepared Res@CDs-Nafion/PTFE shows the similar performance on proton conductivity (103.9 mS cm−1) and hydrogen-air fuel cell (317.84 mW cm−2) compared to the Nafion/PTFE composite membrane. The content of Nafion in the Res@CDs-Nafion/PTFE is less than 30%, which dramatically reduces the production cost compared to pure Nafion membrane. The weight loss of Res@CDs-Nafion/PTFE and Nafion/PTFE immersed in Fenton's reagent after 36 h is 4.97% and 16.49%, respectively, which demonstrate that Res@CDs can enhance oxidation stability of composite membrane. The Res@CDs-Nafion/PTFE offer huge merits of low cost and enhanced oxidation stability, which greatly promotes the application process of long-lifetime PEM fuel cell.  相似文献   

18.
The influence of optimal ultraviolet irradiation of Nafion membranes in enhancing proton conductivity and performance of passive micro-direct methanol fuel cells with silicon micro-flow channels is investigated for the first time. Initially, Nafion membranes are irradiated with different doses of ultraviolet radiation ranging within 0–400 mJ cm−2 and their water uptake, swelling-ratios, porosity, and proton conductivities are measured using standard procedure. Results show that there is an enhancement in proton conductivity with an optimal dose of 198 mJ cm−2 ultraviolet radiation. This enhancement is due to optimum photo-crosslinking of –SO3H species resulting in maximum pore-size which facilitates enhanced proton-hopping from one –SO3H site to another in the hydrophilic channel. Nafion membranes with three different thicknesses (50 μm, 90 μm and 183 μm) are irradiated with ultraviolet radiation with 198 mJ cm−2 dose and passive micro-direct methanol fuel cells are assembled with irradiated Nafion proton exchange membranes. The polarization plots are obtained for the assembled devices. Results show an enhancement of power density of devices nearly by a factor of 1.2–1.5 with optimally irradiated membranes indicating that optimum dose of ultraviolet irradiation of Nafion membranes is an effective technique for power enhancement of proton exchange membrane fuel cells which use fuels like methanol, ethanol and hydrogen.  相似文献   

19.
The electrochemical performance of membrane electrode assemblies (MEAs) with ultra-low platinum load (0.02 mgPt cm?2) and different compositions of Nafion/C in the catalytic layer have been investigated. The electrodes were fabricated depositing the catalytic ink, prepared with commercial catalyst (HiSPEC 2000), onto the gas diffusion layers by wet powder spraying. The MEAs were electrochemically tested using current-voltage curves and electrochemical impedance spectroscopy measurements. The experiments were carried out at 70 °C in H2/O2 and H2/air as reactant gases at 1 and 2 bar pressure and 100% of relative humidity. For all MEAs tested, power density increases when the gasses pressure is increased from 1 to 2 bar. On the other hand, power density also increased when oxygen is used instead of air as oxidant gas in cathode. The lower power density (34 mW cm?2) and power per Pt loading (0.86 kW gPt?1) corresponds to the MEA prepared without Nafion in anode and cathode catalytic layers working with hydrogen and air at 1 bar pressure as reactants gas. The MEA with 30% wt Nafion/C reached the highest power density (422 mW cm?2) and power per Pt loading (10.60 kW gPt?1) using hydrogen and oxygen at 2 bar pressure. Finally, electrode surface microstructure and cross sections of MEAs were analyzed by Scanning Electron Microscopy (SEM). Examination of the electrodes, revealed that the most uniform ionomer network surface corresponds to the electrode with 40 wt% Nafion/C, and MEA ionomer-free catalytic layer shows delamination, it leads to low electrochemical performance.  相似文献   

20.
Multi-walled carbon nanotubes (MWCNTs) were used as catalyst support for depositing platinum nanoparticles by a wet chemistry route. MWCNTs were initially surface modified by citric acid to introduce functional groups which act as anchors for metallic clusters. A two-phase (water-toluene) method was used to transfer PtCl62− from aqueous to organic phase and the subsequent sodium formate solution reduction step yielded Pt nanoparticles on MWCNTs. High-resolution TEM images showed that the platinum particles in the size range of 1-3 nm are homogeneously distributed on the surface of MWCNTs. The Pt/MWCNTs nanocatalyst was evaluated in the proton exchange membrane (PEM) single cell using H2/O2 at 80 °C with Nafion-212 electrolyte. The single PEM fuel cell exhibited a peak power density of about 1100 mW cm−2 with a total catalyst loading of 0.6 mg Pt cm−2 (anode: 0.2 mg Pt cm−2 and cathode: 0.4 mg Pt cm−2). The durability of Pt/MWCNTs nanocatalyst was evaluated for 100 h at 80 °C at ambient pressure and the performance (current density at 0.4 V) remained stable throughout. The electrochemically active surface area (64 m2 g−1) as estimated by cyclic voltammetry (CV) was also similar before and after the durability test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号