首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The first principle calculations are used to investigate hydrogen storage properties of MgTiO3Hx and CaTiO3Hx (x = 0, 3, 6, and 8) perovskite compounds in cubic phase (Pm3 m). In order to examine the stability of these compounds, formation enthalpies are calculated and all compounds (except MgTiO3H6 and MgTiO3H8) are found to be stable. The second order elastic constants and related polycrystalline elastic moduli (e.g., shear modulus, Young's modulus, Poisson's ratio, Debye temperature, sound velocities) are determined and the results are discussed in detail. The mechanical stability determination indicates that MgTiO3, CaTiO3, and CaTiO3H6 compounds are only stable compounds and also MgTiO3 and CaTiO3H6 are ductile while CaTiO3 is a brittle material. Also, the mechanical anisotropy is discussed via two-dimensional (2D) and three-dimensional (3D) surfaces for mechanical stable compounds and they are found to have anisotropic behaviour (except linear compressibility for MgTiO3, CaTiO3). Electronic band structure and corresponding partial density of states (PDOS) and charge density have been plotted. Bader charge analysis have been done. MgTiO3 has metallic behaviour whereas CaTiO3 and CaTiO3H6 have semiconductor behaviour. Among all compounds, CaTiO3H6 is found to be only one that could be used in the hydrogen storage applications. For this compound, the gravimetric hydrogen storage capacity is calculated as 4.27 wt% and the hydrogen desorption temperature is obtained as 827.1 K.  相似文献   

2.
    
In the present study, NaXH3 (X = Mn, Fe, Co) perovskite type hydrides have been investigated by performing first-principles calculation. The results of the structural optimizations show that all these compounds have negative formation energy implying the thermodynamic stability and synthesisability. The mechanical stability of these compounds has been studied with the elastic constants. Moreover, the polycrystalline properties like bulk modulus, Poisson's ratio, etc. have been obtained using calculated elastic constants of interest compounds. The electronic properties have been studied and band structures have been drawn with the corresponding partial density of states. These plots indicated that NaXH3 hydrides show metallic characteristics. The charge transfer characteristics in these compounds have been studied with the Bader partial charge analysis. The phonon dispersion curves and corresponding density of states indicated that NaXH3 compounds are dynamically stable compounds. The investigation on hydrogen storage characteristics of NaXH3 compounds resulted in hydrogen storage capacities of 3.74, 3.70 and 3.57 wt% for X = Mn, Fe and Co, respectively. The present study is the first investigation of NaXH3 perovskite type hydrides as known up to date and may provide remarkable contribution to the future researches in hydrogen storage applications.  相似文献   

3.
    
The role of Mn substitution in FeTi towards the hydrogenation kinetics and hydrogen storage capacity was investigated using a combination of experimental and theoretical tools. Pristine and Mn-substituted FeTi was produced by electro-deoxidation of oxide precursors, such as natural ilmenite, titania and manganese dioxide. The produced materials were evaluated for hydrogen storage capacity. Ab-initio density functional theory (DFT) calculations were performed to understand the thermodynamics and kinetics of hydrogen absorption in pristine and doped FeTi. DFT calculations demonstrate that although thermodynamic and kinetic parameters of hydrogen absorption with Mn substitution is similar to those in the pristine FeTi, oxygen affinity of Mn at the surface is higher than Fe or Ti. We conclude that Mn acts as a sacrificial oxidizing element and oxidizes more readily at the surface over Fe or Ti, resulting in easy activation of the FeTi alloy. We show superior cyclic-hydrogen absorption behavior in bulk in FeTi with Mn substitution. After 20 charge-discharge cycles, the measured hydrogen storage capacity of FeTi with Mn substitution was steady ~120 mA h/g (0.8 wt %), which is noticeably higher than that of pristine FeTi. The experimental and theoretical results shows that in case of a practical hydrogen storage scenario, Mn substitution will benefit in reducing absorption fatigue in FeTi. Further, most likely it may not be possible to use pristine FeTi phase.  相似文献   

4.
Element doping is an effective way to improve the performance of hydrogen storage. The influences of Ti- and Hf-substituted dopants on the hydrogen storage and mechanical properties in a Zirconium-Cobalt alloy have been investigated by the first principle method. The results show that the Ti and Hf atoms preferentially occupy the Zr atoms to form new Zr7Co8Ti and Zr7Co8Hf compounds. The cohesive energy of Zr7Co8Ti and Zr7Co8Hf are ?7.518 eV/atom and ?7.531 eV/atom, thus Zr7Co8Hf shows a better structural stability than Zr7Co8Ti. The B/G ratio of Zr7Co8Ti and Zr7Co8Hf are 3.42 and 3.89, respectively, which indicates that Ti doping could increase the ductility of the alloy, thus improving the recycling performance of the alloy. The calculation for the electronic structure, mechanical property and structural stability may provide an effective way and theoretical evidence for the better design and optimization of hydrogen storage materials.  相似文献   

5.
Density functional theory calculations are used herein to explore the effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides. The polycrystalline elastic moduli, Poisson's ratios and Debye temperatures are calculated based on the single-crystal elastic constants and Voigt-Reuss-Hill approximations. It is also found that all these materials are metallic behavior, ductile and anisotropic in nature. The mechanical anisotropy is discussed via several anisotropy indices and three-dimensional (3D) surface constructions. The effect of high temperature on the free energy, entropy, and heat capacity are also studied by using the quasi-harmonic Debye model. LaMgNi4 and its hydrides are found to be energetically, mechanically and dynamically stable. Also, they are thermodynamically stable and the order of phase stability is LaMgNi4H7 > LaMgNi4H4 > LaMgNi4H > LaMgNi4. In addition, the highest gravimetric hydrogen storage capacity is found to be 1.74 wt% for LaMgNi4H7.  相似文献   

6.
In this paper, an alternative process route to produce active nanocrystalline TiFe compound was investigated. First, TiH2 and Fe powders were dry co-milled in a planetary ball mill for 5–40 h. TiH2 was selected as precursor powder, instead of Ti powder, due its fragility, which has proved to be beneficial to decrease powders adherence on milling tools. In terms of loose powder mass, milling yields ranged from 90 to 95 wt.%. Next, milled powders were post-heated at 873 K under dynamic high-vacuum for TiFe synthesis reaction. First hydrogen absorption was verified in situ during the cooling process of samples (until the room temperature), being the amount of hydrogen absorbed and desorbed by this samples measured by automated Sievert's apparatus, under constant hydrogen flow rate of 9 cm3. min-1 (dynamic measurements). Besides to allowing the first absorption in situ, the investigated process route also allowed the production of the non-stoichiometric TiFe compound (rich in Ti) in samples milled for shorter times (5 and 10 h), both characteristics associated with maintaining the mechanical compound activity. Each sample absorbed hydrogen at 2 MPa during the cooling process, requiring no additional thermal activation cycles, since the samples milled for shorter times (mainly for 10 h) could absorb hydrogen for the first time more easily. However, the samples milled for longer times (25 and 40 h) shown better results in terms of reversible and storage capacities (0.73 and 0.94 wt.%, respectively).  相似文献   

7.
The objective of this work was to develop a 70 MPa hydride-based hydrogen compression system. Two-stage compression was adopted with AB2 type alloys as the compression alloys. Ti0.95Zr0.05Cr0.8Mn0.8V0.2Ni0.2 and Ti0.8Zr0.2Cr0.95Fe0.95V0.1 alloys were developed for the compression system. With these two alloys, a 70 MPa two-stage hydride-based hydrogen compression system was designed and built with hot oil as the heat source, and composite materials formed by mixing hydrogen storage alloys with Al fiber were used to prevent hydride bed compaction and to prevent strain accumulation. The experimental results showed that Ti0.95Zr0.05Cr0.8Mn0.8V0.2Ni0.2 and Ti0.8Zr0.2Cr0.95Fe0.95V0.1 alloys could well meet the requirements of compression system. Composite materials formed by mixing hydrogen storage alloys with Al fiber were an effective way to prevent strain accumulation for hydride compression. With cold oil (298 K) and hot oil (423 K) as the cooling and heating sources, the built compression system could convert hydrogen pressure from around 4.0 MPa to over 70 MPa.  相似文献   

8.
    
In this study, we propose a method to produce nanocrystalline TiFe powder by high-energy ball milling, in order to avoid the common sticking problem of the material to the milling tools, assuring a material prompt to absorb hydrogen as well. The method consists of making a preliminary milling operation with the elemental powders (50:50 stoichiometric ratio) to form a strong adhered layer of the milled material on the surfaces of the vial and balls. The main milling operation is then performed with a new powder charge (same composition as before), but now adding a process control agent (stearic acid). Various processing times - 2, 6, 10 and 20 h - were used in the milling experiments. Nanocrystalline TiFe was synthesized in this way with low oxygen contamination, full yields for milling times of 6 h or over, requiring no heat treatments for the first hydrogen absorption. Hydrogen storage capacity of 1.0 wt% at room temperature under 20 bar was attained by the sample milled for 6 h. Kinetic data from samples milled for 2 h and 6 h agreed with Jander model for the rate limiting step of the hydriding reaction, which is based on diffusion with constant interface area.  相似文献   

9.
Hydrogen-storage properties and mechanisms of a novel Li–Al–N ternary system were systematically investigated by a series of performance evaluation and structural examinations. It is found that ca. 5.2 wt% of hydrogen is reversibly stored in a Li3N–AlN (1:1) system, and the hydrogenated product is composed of LiNH2, LiH, and AlN. A stepwise reaction is ascertained for the dehydrogenation of the hydrogenated Li3N–AlN sample, and AlN is found reacting only in the second step to form the final product Li3AlN2. The calculation of the reaction enthalpy change indicates that the two-step dehydrogenation reaction is more thermodynamically favorable than any one-step reaction. Further investigations exhibit that the presence of AlN in the LiNH2–2LiH system enhances the kinetics of its first-step dehydrogenation with a 10% reduction in the activation energy due likely to the higher diffusivity of lithium and hydrogen within AlN.  相似文献   

10.
LaNi5 was obtained from raw materials by low energy mechanical alloying. Hydriding properties of as-milled intermetallic were improved by annealing. Pressure-composition isotherms showed flat plateaus when annealing temperature was 600 °C, this value is at least 300 °C lower than the synthesis and annealing temperature of standard equilibrium methods. This low energy mechanical alloying - low temperature annealing procedure reduces the number of intermediate stages needed to scale up the fabrication of the intermetallic. After cycling this material in hydrogen, its hydriding properties were studied in the 25-90 °C range. From these results, we propose a one-stage hydrogen thermal compression scheme working between 25 °C (absorption) and 90 °C (desorption) with a compression ratio of 2.5 and a useful capacity of 1.0 mass %.  相似文献   

11.
    
In this work, the mechanical milling of a FeTiMn alloy for hydrogen storage purposes was performed in an industrial milling device. The TiFe hydride is interesting from the technological standpoint because of the abundance and the low cost of its constituent elements Ti and Fe, as well as its high volumetric hydrogen capacity. However, TiFe is difficult to activate, usually requiring a thermal treatment above 400 °C. A TiFeMn alloy milled for just 10 min in a 100 L industrial milling device showed excellent hydrogen storage properties without any thermal treatment. The as-milled TiFeMn alloy did not need any activation procedure and showed fast kinetic behavior and good cycling stability. Microstructural and morphological characterization of the as-received and as-milled TiFeMn alloys revealed that the material presents reduced particle and crystallite sizes, even after such short time of milling. The refined microstructure of the as-milled TiFeMn is deemed to account for the improved hydrogen absorption-desorption properties.  相似文献   

12.
    
In this work, we predict a range of favorable functional properties of (LiBH4)2NH3BH3, a relatively new member of the boron-containing metal borohydride ammonia borane family, by means of ab initio calculations, as well as its parent compounds, LiBH4 and NH3BH3, for comparisons. Both the mechanical and dynamical stabilities of this new compound have been demonstrated theoretically for the first time. Results from elastic modulus calculations show that the mechanical properties of (LiBH4)2NH3BH3 are remarkably improved compared with its parent compounds. Secondly, Electronic structure results show that it remains to an insulator with large band gap typical of the boron-containing hydrogenous family, but the band gap can be tuned by the compositions of NH3BH3 and LiBH4. Charge analysis demonstrates that charge transfers in individual layers of LiBH4 and NH3BH3 are similar to LiBH4 and NH3BH3, respectively. A measurable amount of charge transfers from the LiBH4 layers to the NH3BH3 layers result in enhanced activation properties for hydrogenation and dehydrogenation in (LiBH4)2NH3BH3. Thirdly, Free energies of six possible dehydrogenation reactions have been calculated from 0 K to 700 K, and the results show that combination of NH3BH3 and LiBH4 can reduce the dehydrogenation energies compared with the parent compounds, a result consistent with recent experiments. Meanwhile, the N–B bond strengths increase and thereby borazine and diborane formation are reduced upon dehydrogenation.  相似文献   

13.
The study of phonons describes the thermodynamic properties behavior of compounds with small atoms because phonons have an important influence on its properties. Lithium borohydride, LiBH4, is one of the suitable materials for hydrogen storage solid state. Although the transformations of Lithium borohydride LiBH4 were repeatedly studied by experiments and fundamental side, these transformations are still under discussion. In the present work, the mode vibrational analysis of orthorhombic and hexagonal LiBH4 structures were considered with ab initio lattice-dynamics based on the quasi-harmonic approximation approach as implemented in Phonopy code. The results show that the orthorhombic structure is thermodynamically stable, while the hexagonal structure is unstable owing to the presence of negative mode frequency. The thermal expansion behavior and various thermodynamic properties stability like heat capacity, entropy and Helmholtz energy were also studied and the obtained results are in good agreement with experiments. This shows a deep connection between stability and strength and helps researchers to estimate accurately the thermodynamic performance of LiBH4 materials.  相似文献   

14.
The effects of NaOH addition on hydrogen absorption/desorption properties of the Mg(NH2)2-2LiH system were investigated systematically by means of dehydrogenation/hydrogenation measurements and structural analyses. It is found that the NaOH-added Mg(NH2)2-2LiH samples exhibit an enhanced dehydrogenation/hydrogenation kinetics. In particular, a ∼36 °C reduction in the peak temperature for dehydrogenation is achieved for the Mg(NH2)2-2LiH-0.5NaOH sample with respect to the pristine sample. Structural examinations reveal that NaOH reacts with Mg(NH2)2 and LiH to convert to NaH, LiNH2 and MgO during ball milling. Then, their co-catalytic effects result in a significant improvement in the dehydrogenation/hydrogenation kinetics of the Mg(NH2)2-2LiH system. This finding will help in designing and optimizing the novel high-performance catalysts to further improve hydrogen storage in the amide-hydride combined systems.  相似文献   

15.
The hydrogen storage phase of an energy storage plant based on metallic hydrides has a strong influence on the total efficiency of storage power plants as well as on their response time. The technique presented in this paper uses a hydrogen-metal chemical bond during its storage. This paper describes a metal hydride cylinder modeled and simulated by using the main quantities involved in the adsorption and desorption processes as well as in an analysis of the influence of thermal quantities involved in these processes. As a result, a proposal for automation of the thermal exchange of the modeled cylinder is presented and the possibilities of evaluation of this technique.  相似文献   

16.
A simple mechanical milling and annealing process has been used to synthesize CaNi5-based hydrogen storage alloys. Heat treatment at 800 °C under vacuum results in the formation of a crystalline CaNi5 phase. Secondary phases, including Ca2Ni7 and Mo–Ni, are formed when substituting Mo for Ni. Replacement of Ni by Al or Mo leads to an increase in the unit cell volume of the CaNi5 phase. The hydrogen storage capacity of all substituted alloys is reduced and the plateau pressures are lower than those of pure CaNi5. Fairly flat plateau regions are retained for all compositions except the CaNi4.8Mo0.2 composition where a Ca2Ni7 phase is dominant. The incorporation of Mo also causes slow sorption kinetics for the CaNi4.9Mo0.1 alloy. CaNi4.9Al0.1 maintains its initial hydrogen absorption capacity for 20 cycles performed at 85 °C but the other substituted alloys lose their capacity rapidly, especially the CaNi4.8Mo0.2 composition.  相似文献   

17.
    
XNiH3 (X = Li, Na, and K) perovskite type hydrides have been studied by using Density Functional Theory (DFT) and these materials are found to be stable and synthesizable. The X-ray diffraction patterns have been obtained and they indicate that all materials have the polycrystalline structure. The electronic properties have been investigated and it has been found that these structures show metallic character. The Bader partial charge analysis has also been performed. In addition, the elastic constants have been calculated and these materials are found to be mechanically stable. Using these elastic constants, the mechanical properties such as bulk modulus, shear modulus, Poisson's ratio have been obtained. Moreover, the Debye temperatures and thermal conductivities have been studied. The anisotropic elastic properties have been visualized in three dimensions (3D) for Young's modulus, linear compressibility, shear modulus and Poisson's ratio as well as with the calculation of the anisotropic factors. Additionally, the dynamical stability has been investigated and obtained phonon dispersion curves show that these materials are dynamically stable. Also, the thermal properties including free energy, enthalpy, entropy and heat capacity have been studied. The hydrogen storage properties have been examined and the gravimetric hydrogen storage capacities have been calculated as 4.40 wt%, 3.57 wt% and 3.30 wt% for LiNiH3, NaNiH3 and KNiH3, respectively. Furthermore, the hydrogen desorption temperatures have been obtained as 446.3 K, 419.5 K and 367.5 K for LiNiH3, NaNiH3 and KNiH3, respectively.  相似文献   

18.
The structural stability and hydrogen release properties of M-doped KMgH3 (M = Li, Na, Rb, or Cs) were examined using density functional theory (DFT) calculations. The reaction enthalpies (ΔH) of the four possible dehydrogenation reaction pathways were calculated using the doped structures with different phases (Pm3¯m, Pnma, and R3c). The most favorable reaction pathway among these four pathways was found. Among the dopants investigated, the most promising dopant for this reaction was Li. In addition, the application of pressure was found to be useful for tuning the reaction enthalpies of the dehydrogenation reactions. Overall, the results present an efficient means of designing new promising perovskite-type hydrides for hydrogen storage.  相似文献   

19.
In this paper, Al was partially substituted by Ni in the Zintl phase alloy SrAl2 and the structural and hydrogenation characteristics of the SrAl2−xNix (0 ≤ x ≤ 0.4) alloys were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and hydrogenation measurements. The alloy consisted of a single Zintl phase of SrAl2 when x = 0. However, partial substitution of Al by Ni resulted in multiphase structure of the alloys. When x = 0.1, the alloy was composed of SrAl2, Sr5Al9, SrAl and AlNi phases. With the increase of x, the amount of SrAl2 and Sr5Al9 phases decreased, while the amount of SrAl and AlNi phases increased. Hydrogenation measurements were made at 473 K under 3 MPa hydrogen pressure. It was interesting to find that the hydriding kinetics of the alloy was improved greatly after Ni substitution, which could be attributed to the catalysis of AlNi phase.  相似文献   

20.
    
In present study nanocomposites of Graphene Like Material (GLM) and nickel containing 5–60 wt % Ni were prepared by a co-reduction of graphite oxide and Ni2+ ions. These nanocomposites served as effective catalysts of hydrogenation-dehydrogenation of magnesium based materials and showed a high stability on cycling. Composites of magnesium hydride with Ni/GLM were prepared by high-energy ball milling in hydrogen. The microstructures and phase compositions of the studied materials were characterized by XRD, SEM and TEM showing that Ni nanoparticles have size of 2–5 nm and are uniformly distributed in the composites. The kinetic curves of hydrogen absorption and desorption by the composites were measured using a Sievert's type laboratory setup and were analyzed using the Avraami – Erofeev approach. The re-hydrogenation rate constants and the Avraami exponents fitting the kinetic equations for the Mg/MgH2+Ni/GLM composites show significant changes as compared to the Mg/MgH2 prepared at the same conditions and this difference has been assigned to the changes in the mechanism of nucleation and growth and alteration of the rate-limiting steps of the hydrogenation reaction. The composites of Mg with Ni/GLM have a high reversible hydrogen capacity exceeding 6.5 wt % H and also show high rates of hydrogen absorption and desorption and thus belong to the promising hydrogen storage materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号