首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluidisation is frequently accompanied by unwanted attrition of the bed material. This paper focuses on the mechanical aspects of fines creation by attrition in fluidised beds supported by multi-orifice distributor plates. The attrition rates of low-density porous glass particles were measured; these particles show abrasive wear behaviour rather than breakage. Positron emission particle tracking (PEPT) was used to follow particle motion in three dimensions within the fluidised bed. For a single orifice distributor with background fluidisation, the attrition rate increased exponentially with increasing orifice gas velocity. For a multi-orifice distributor, however, attrition rates were roughly proportional to excess gas velocity, except near to a critical ratio of particle to orifice diameter; as this ratio approached 2, attrition was observed to increase by an order of magnitude. A method is proposed for estimating attrition rates from a combination of small-scale experimental results and theoretical calculations of distributor jet entrainment rates.  相似文献   

2.
Measurements have been taken of the flow rate, pressure drop and bed height characteristics when non-Newtonian slurries flow through fixed and fluidised beds of uniformly sized spherical particles.In the case of fixed beds, the pressure drop-flow rate data has been interpreted using the capillary model of a porous medium together with rheological data for the slurries obtained from a tubular viscometer. The resulting friction factor-Reynolds number relationship is
This correlation was used to satisfactorily predict the minimum fluidisation velocity for a given solid/liquid system by equating the pressure drop to the net weight per unit area of particles in the bed. However, the correlation was not adequate for the prediction of bed expansion in the fluidised state. For systems which have a Reynolds number at minimum fluidisation, Remf′ less than 40 an effect of particle diameter to bed diameter was observed. For systems having Remf >40 the velocity, υ, and voidage, ?, were related to their values at minimum fluidisation by
It is therefore clear that, in the fluidised state, the capillary model does not present an adequate basis for the prediction of bed expansion.  相似文献   

3.
The behaviour of multi-orifice distributors in gas-solids fluidised beds has been studied with particular regard to the height of the entrance effect and the mechanics of gas-solids flow in the region immediately above the distributor plate. A model is proposed to predict the height of the entrance effect for a given distributor and gas-solids system at various fluidising flow-rates, and good agreement has been found with experiment. Experiments have been carried out with (a) a two-dimensional air-fluidised bed using three sizes of sand particles (dp: 137, 263, and 350 μm) and four distributors (orifice diameters: 0.001 m, 0.002 m; orifice spacings: 0.025 m, 0.05 m); and (b) a three-dimensional air-fluidised bed, 0.3 m square in cross-section, using 350 μm sand particles on a distributor with 0.003 m diameter orifices at a spacing of 0.04 m. The principal factors influencing the height of the entrance effect were found to be the incipient fluidising velocity, mean particle size, orifice spacing and gas flow-rate. The model has been used to estimate the minimum ratio of distributor pressure drop to bed pressure drop to bring about an even distribution of gas at the bottom of the bed.  相似文献   

4.
In this paper the feasibility of feeding a horizontal pneumatic conveying line directly from a fluidized bed is explored by investigating the relationships governing the solids mass flow rate in such a pipe as a function of both pressure drop and pipe length. Three different materials were fluidized by air and discharged though a 25 mm internal diameter pipe. Materials used were turnip seeds of mean diameter 1.5 mm, carbon steel shot of mean diameter 0.73 mm and plastic pellets of mean diameter 3.76 mm. Several pipe lengths were used, from 0.75 to 1.77 m. The experiments showed that it is feasible to feed directly from a fluidized bed to a horizontal pneumatic conveying line. The flow regime in the pipe was that of dense phase conveying also called slug flow. The data collected show that there is a clear relationship between the pressure drop down the conveying line and the discharge rate of solids from the line. The discharge rate is also dependent on the pipe length.In previous studies of pneumatic conveying, the solids and gas mass flow rates have been independently set, which cannot be done if the conveying line is fed from a fluidized bed. For a pipe fed from a fluidized bed, the solid and gas mass ratio are coupled and this was modelled using the theory for air-augmented granular discharge through an orifice in a hopper or silo of Nedderman et al. [1983. The effect of interstitial air pressure gradients on the discharge from bins. Powder Technology 35, 69-81], but as modified by Thorpe [1984. Air-augmented flow of granular materials through orifices. Ph.D. Thesis, University of Cambridge] for horizontal discharge. This was then combined with a modification of the theory of Konrad [1981. Ph.D. Dissertation, University of Cambridge] to give a prediction of the total pressure drop and the gas and solid mass flow rates. This combined model for dense-phase conveying from a fluidized bed was found to give an excellent fit to the data using the standard values for the constants in every equation. The predictions of the combined model also agree well with the experiments of Konrad [1981. Ph.D. Dissertation, University of Cambridge] for discharge from a hopper into a horizontal conveying line.  相似文献   

5.
Dense-phase pneumatic conveying of solids offers many advantages over dilute-phase conveying. The lower air velocities, and, consequently, lower particle velocities, result in lower pipe wear and lower particle attrition. This paper describes an experimental program that has been undertaken to study the flow pattern of cohesionless solids in vertical transport and to measure the parameters influencing the pressure drop required to move a single plug of solids. Highspeed photographic techniques have been used to observe the flow pattern of polyethylene particles (diameter ? 3 mm) in the vertical riser section of a circulating unit constructed from pipes with an internal diameter of 50.8 mm. The flow pattern resembles that of square-nosed slugging in a fluidized bed. The solids move up as “plugs” of bulk solids that occupy the entire cross-section of the pipe. Particles are seen to “rain” down from the back of one plug and then to be collected by the front of the next plug. Collecting these particles causes a stress on the plug front which is transmitted by powder mechanics forces axially through the plug and radially to the wall. The pressure drop required to move a single plug of cohesionless solids through the transport pipeline was measured as a function of the plug length, particle properties, pipe diameter, and the frontal stress. The results of these experiments are compared with a theoretical model.  相似文献   

6.
Fluid beds are now being used for processing pasty materials including production of fine powders through drying suspensions in beds of inert particles; coating of tablets or pellets; granulation, etc. In such processes, the fluid bed operation becomes more complex due to the development of cohesive forces resulting from liquid bridges between particles. Such forces can affect gas and solids flow leading to uncontrollable particle agglomeration and to poor gas–solid contact. This work is aimed at analyzing and quantifying the differences of flow behavior in fluidized and spouted beds of wet and dry particles. Experimentally, surface stickiness is induced by application of metered amounts of glycerol. Based on pressure drop vs. fluid flow rate curves, solids circulation rates and bed porosity variations, two types of particle–particle interaction forces are identified and their effect on air–solid flow is quantified as a function of glycerol concentration. Implications of these results in coating, granulation and drying of suspensions in these beds are also discussed.  相似文献   

7.
Hydrodynamic modeling of a circulating fluidized bed   总被引:1,自引:0,他引:1  
Hydrodynamics plays a crucial role in defining the performance of circulating fluidized beds (CFB). The numerical simulation of CFBs is very important in the prediction of its flow behavior. From this point of view, in the present study a dynamic two dimensional model is developed considering the hydrodynamic behavior of CFB. In the modeling, the CFB riser is analyzed in two regions: The bottom zone in turbulent fluidization regime is modeled in detail as two-phase flow which is subdivided into a solid-free bubble phase and a solid-laden emulsion phase. In the upper zone core-annulus solids flow structure is established. Simulation model takes into account the axial and radial distribution of voidage, velocity and pressure drop for gas and solid phase, and solids volume fraction and particle size distribution for solid phase. The model results are compared with and validated against atmospheric cold bed CFB units' experimental data given in the literature for axial and radial distribution of void fraction, solids volume fraction and particle velocity, total pressure drop along the bed height and radial solids flux. Ranges of experimental data used in comparisons are as follows: bed diameter from 0.05-0.418 m, bed height from 5-18 m, mean particle diameter from 67-520 μm, particle density from 1398 to 2620 kg/m3, mass fluxes from 21.3 to 300 kg/m2s and gas superficial velocities from 2.52-9.1 m/s.As a result of sensitivity analysis, the variation in mean particle diameter and superficial velocity, does affect the pressure especially in the core region and it does not affect considerably the pressure in the annulus region. Radial pressure profile is getting flatter in the core region as the mean particle diameter increases. Similar results can be obtained for lower superficial velocities. It has also been found that the contribution to the total pressure drop by gas and solids friction components is negligibly small when compared to the acceleration and solids hydrodynamic head components. At the bottom of the riser, in the core region the acceleration component of the pressure drop in total pressure drop changes from 0.65% to 0.28% from the riser center to the core-annulus interface, respectively; within the annulus region the acceleration component in total pressure drop changes from 0.22% to 0.11% radially from the core-annulus interface to the riser wall. On the other hand, the acceleration component weakens as it moves upwards in the riser decreasing to 1% in both regions at the top of the riser which is an important indicator of the fact that hydrodynamic head of solids is the most important factor in the total pressure drop.  相似文献   

8.
The flow of gas escaping from a bunker during pneumatic discharge of solid particles has been measured. A laboratory bunker (0.20 m diam.) was used from which sand (average size 205 μm) or glass ballotini (average size 100 and 200 μm) were discharged while simultaneously air was introduced at the bottom.It appeared that the flow of gas is primarily a function of the solids flow rate; orifice diameter and particle properties occurs as parameters in this relation.When combining this result with that of a previous investigation a unique relation is obtained between air flow rate, solids flow rate and pressure drop across the orifice.  相似文献   

9.
In order to understand the increase in pressure drop in hydrotreating reactors due to deposition of fine solids, experiments were conducted with a model suspension of kaolin clay in kerosene. The suspension was circulated through packed beds of catalyst pellets in the trickle‐flow and pulse‐flow regimes, and the increase in pressure drop measured as a function of particle concentration in the bed. The increase in pressure drop was linear with particle concentrations over the range 0–60 kg.m?3. A consistent approach to modeling the pressure drop behavior was to determine an effective porosity of the packed bed as a function of the concentration of fine particles, then use this porosity in the Ergun equation as a basis for calculating the two‐phase pressure drop.  相似文献   

10.
The control of the solids circulation rate in circulating fluidized beds (CFB) can be obtained by means of a mechanical valve located at the bottom of the return leg. The valve acts by provoking a pressure drop that depends on the degree of the opening. The aim of this work is to develop a predictive model for the pressure drop in a butterfly valve used as a control device for the solids circulation rate. A model has been developed and validated against experimental data obtained from a 0.1 m id, 6 m high CFB using a group B powder. The equations proposed by, Jones and Davidson [D.R.M. Jones, J.F. Davidson, The flow of particles from a fluidised bed through orifices, Rheologica Acta 4 (1965) 180] and Cheng et. al. [L. Cheng, P. Basu, Solids circulation rate prediction in a pressurized loop seal, in: K. Chen (Ed.), Chemical Engineering Research and Design, vol. 76, 1998, p. 761] to predict the discharge rate of granular solid through orifices have been modified to account for the shape of the openings in the valve. A corrective parameter, which is based on the dimensionless hydraulic diameter of the valve opening, has been introduced. Very good agreement with the experimental data was obtained.  相似文献   

11.
在内径3~20 mm的4个气-固微型流化床中,分别考察了A类和B类两种类型颗粒的流化特性,同时研究了床几何结构、操作条件、物相性质等各因素对其最小流化速度的影响.结果 表明,气-固微型流化床中的床层压降特性与颗粒类型密切相关,不同的流动状态下两种类型颗粒的流动特性存在显著地差异.在固定床阶段,与B类颗粒相比,A类颗粒与...  相似文献   

12.
13.
Hydrodynamic characteristics, viz. bed pressure drop and gas holdup, have been studied for ternary mixtures of homogeneous regular particles in a co-current three-phase fluidized bed. For this, a series of experiments have been carried out in a 5-cm diameter column with air as the gas phase, water as the liquid phase, and ternary mixtures of glass beads (1.54, 1.3, and 1.1 mm) as the solid phase. The dependence of bed pressure drop on the average particle diameter, superficial gas velocity, and initial static bed height has been discussed. Based on the dimensional and statistical analyses, correlations have been developed with the system parameters, for both bed pressure drop and gas holdup. Experimental values of bed pressure drop and gas holdup have been found to agree well with those calculated from developed correlations.  相似文献   

14.
A novel system of two adjacent fluidised beds operating in different gas atmospheres and exchanging solids was developed for the combined flash pyrolysis of biomass and combustion of the produced char. Fluidised sand particles (200 μm < dp < 400 μm) are transported from the pyrolysis reactor to the combustor through an orifice and recycled by a standpipe, riser and cyclone. Advantages of the new design are its compactness and the high level of heat integration. The solids circulation rate and holdup distribution between the two compartments could be controlled adequately in experiments at room temperature and atmospheric pressure. A model, developed to predict the solids and gas exchange between the two reactor compartments, was validated with experiments in which the three relevant gas flows, the orifice diameter and the particle diameter were varied.  相似文献   

15.
The effects of orifice diameter in the draft tube, particle size, gas velocities and bed height on the circulation rate of solids and gas bypassing between the draft tube and annulus have been determined in an internally circulating fluidized bed (i.d., 0.3 m ; height, 2.5 m) with an orifice-type draft tube. A conical shape gas separator has been employed above the draft tube to facilitate the separation of gases from the two beds. The circulation rate of solids and the quantity of gas bypass from the annulus to draft tube show their minimums when the static bed height is around the bottom of the separator. The circulation rate of solids increases with an increase in orifice diameter in the draft tube. At fixed aeration to the annulus, gas bypassing from the draft tube to annulus sections decreases, whereas reverse gas bypassing from the annulus to the draft tube increases with increasing the inlet gas velocity to the draft tube. The obtained solids circulation rate has been correlated by a relationship developed for the cocurrent flow of gas and solid through the orifice.  相似文献   

16.
气体的温度和压力及颗粒形状对固定床压降的影响   总被引:3,自引:0,他引:3  
本文在A-S方程的基础上推导出气体流经固定床时的压降表达式。  相似文献   

17.
《Fuel》2006,85(10-11):1439-1445
This paper focuses on the role of coal particle size distribution on pressure drop and gas flow distribution through packed coal beds. This fundamental knowledge is helpful in better understanding the operational behaviour of fixed bed dry bottom gasifiers. The Sasol synfuels plants in South Africa use 80 such gasifiers to convert more than 26 million tons of coal per annum to synthesis gas, and ensuring stable operation is of primary importance to ensure high synthesis gas production rates and gasifier availability. Pressure drop measurements on laboratory scale equipment were conducted to investigate the effect of particle size distribution on packed bed pressure drop. The well-known Ergun equation for pressure drop does not accommodate the effect of size distribution on pressure drop. A novel approach was followed to model pressure drop through simulated coal bed structures using Computational Fluid Dynamics (CFD). The coal bed structures were simulated by assuming that the coal particles are represented by randomised convex polyhedra in three-dimensional space. The computational space was divided into polyhedra using statistical Voronoi tessellation technique, which have been shown to be versatile in modelling problems in many fields, e.g. filtration, molecular physics, metallurgy, geology, forestry and astrophysics. This approach of flow modelling through packed coal beds is able to accommodate size distribution effects on pressure drop and gas flow distribution. The modelling work shows large deviations from plug flow with broad size distributions. The lowest bed pressure drop with the closest approximation to plug flow is obtained with the narrowest particle size distribution. Low gas flow rates are also beneficial for reducing excessive channel flow. Combustion profiles for different particle size distributions were studied using a pilot scale combustor. The combustion profiles provide confirmation of the CFD modelling results, namely that narrow particle size distributions and low gas flow rates reduce channel burning. Excessive channel burning was observed for broad particle size distributions, and is enhanced by high gas flow rates. The experimental and modelling work which was conducted, clearly indicate that narrow coal particle size distributions are desirable for optimum gas flow distribution and lowest packed bed pressure drop.  相似文献   

18.
Experimental pressure drop results have been obtained for dilute phase pneumatic conveying of ordinary portland cement in a 100 mm diam. horizontal pipe with a test section length of 18 m.Significant drag reduction was detected in the presence of pressure pulsations introduced into the flow by a Roots type blower. Suppression of the pressure pulsations eliminated drag reduction.Compared with steady flow condition, it was found that pressure pulsations had a stabilising influence on the flow, permitting a 32% higher solids feed rate to be obtained before the formation of a stationary bed and the onset of unstable flow.Drag reduction in the test section was obtained at the expense of an increased pressure drop in the mixing and solids acceleration zones.  相似文献   

19.
The traditional fixed-bed reactor design is usually not suitable for the low tube-to-particle diameter ratios (N=D/d < 8) where the local phenomena of channeling near the wall and backflow in the bed are dominant. The recent "solid particle" meshing method is too complicated for mesh generation, especially for non-spherical particles in large random packed beds, which seriously hinders its development. In this work, a novel high-fidelity mesh model is proposed for simulation of fixed bed reactors by combining the immersed boundary and adaptive meshing methods. This method is suitable for different shapes of particles, which ingeniously avoids handling the complex "contact point" problem. Several packed beds with two different shapes of particles are investigated with this model, and the local flow in the bed is simulated without geometrical simplification. The predicted pressure drop across the fixed bed and heat transfer of the single particle are in good agreement with the corresponding empirical relations. Compared with spherical particles, the packed bed packing with pentaphyllous particles has lower pressure drop and better heat/mass transfer performance, and it shows that this method can be used for the screening of particle shapes in a fixed bed.  相似文献   

20.
Bed collapsing experiments were carried out in a cold-air transparent column 192 mm in diameter and 2 m high. Typical Fluid Catalytic Cracking (FCC) catalyst with a mean particle size of 76 μm and a density of 1400 kg/m3 was used. Both single and double-drainage protocols were tested. The local pressure drop and bed surface collapse height were acquired throughout the bed settling.Typical results were found regarding dense phase voidage of a fluidised bed and the bed surface collapse velocity. In addition, bubble fraction was calculated based on the collapse curve.Experimental results showed that windbox effect is significantly reduced compared to previous works since the volume of air within the windbox was reduced. The comparison of single/double-drainage protocols revealed a new period in the defluidisation of Geldart-A particles concerning gas compressibility. Through the temporal analysis of local pressure drop, the progress of the solid sedimentation front from bottom to top was determined, analysed and modelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号