首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen evolution from ammonia borane (AB) hydrolysis is of great importance considering the ever-increasing demand for green and sustainable energy. However, the development of a facile and efficient strategy to construct high-performance catalysts remains a grand challenge. Herein, we report an amino-group and space-confinement assisted strategy to fabricate Rh nanoparticles (NPs) using amino-functionalized metal-organic-frameworks (UiO-66-NH2) as a NP matrix (Rh/UiO-66-NH2). Owing to the coordination effect of amino-group and space-confinement of UiO-66-NH2, small and well-distributed Rh NPs with a diameter of 3.38 nm are successfully achieved, which can be served as efficient catalysts for AB hydrolysis at room temperature. The maximum turnover frequency of 876.7 min?1 is obtained by using the Rh/UiO-66-NH2 with an optimal Rh loading of 4.38 wt% and AB concentration of 0.2 M at 25 °C, outperforming most of the previously developed Rh-based catalysts. The catalyst is also stable in repetitive cycles for five times. The high performance of this catalyst must be ascribed to the structural properties of UiO-66-NH2, which enable the formation of small and well-dispersed Rh NPs with abundant accessible active sites. This study provides a simple and efficient method to significantly enhance the catalytic performance of Rh for AB hydrolysis.  相似文献   

2.
The production of new solar fuel through CO2 photocatalytic reduction has aroused tremendous attention in recent years because of the increased demand of global energy sources and global warming caused by the mass concentration of CO2 in the earth's atmosphere. In this work, UiO-66-NH2 was co-modified by the Au nanoparticles (Au-NPs) and Graphene (GR). The resultant nanocomposite exhibits a strong absorption edge in visible light owing to the surface plasmon resonance (SPR) of Au-NPs. More attractively, Au/UiO-66-NH2/GR displays much higher photocatalytic activity (49.9 μmol) and selectivity (80.9%) than that of UiO-66-NH2/GR (selectivity: 71.6%) and pure UiO-66-NH2 (selectivity: 38.3%) for the CO2 reduction under visible light. The enhanced photocatalytic performance is primarily dued to the surface plasmon resonance (SPR) of Au-NPs, which could enhance the visible light absorption. The GR sheets could play as an electron acceptor with superior conductivity and thus suppress the recombination of electrons and holes. Besides, the GR could also improve the dispersibility of UiO-66-NH2 so as to expose more active sites and strengthen the capture of CO2. The contact effect and synergy effect among different samples are strengthened in the ternary composites and the photocatalytic performance is therefore improved. This study demonstrates a MOF based hybrid composite for efficient photocatalytic CO2 reduction, the findings not only prove great potential for the design and application of MOFs-based materials but also bring light to novel chances in the development of new high performance photocatalysts.  相似文献   

3.
The annealed Ti3C2Tx MXenes retained original layered morphology and gave rise to the formation of TiO2 is anticipated to achieve improved photocatalytic hydrogen evolution performance as a noble-metal-free co-catalyst. In this work, a novel Ti3C2/TiO2/UiO-66-NH2 hybrid was rationally designed for the first time by simply introducing annealed Ti3C2Tx MXenes over water-stable Zr-MOFs (UiO-66-NH2) precursors via a facile hydrothermal process. As expected, the rationally designed Ti3C2/TiO2/UiO-66-NH2 displayed significantly improvement in photocatalytic H2 performance (1980 μmol·h1·g1) than pristine UiO-66-NH2 under simulated sunlight irradiation. The excellent photocatalytic HER activity can be attributed to the formation of multi-interfaces in Ti3C2/TiO2/UiO-66-NH2, including Ti3C2/TiO2/UiO-66-NH2, Ti3C2/TiO2 and Ti3C2/UiO-66-NH2 interfaces, which constructed multiple pathways at the interfaces with Schottky junctions to accelerate the separation and transfer of charge carriers and endowed the accumulation of photo-generated electrons on the surface of Ti3C2. This work expanded the possibility of porous MOFs for the development of efficient photocatalytic water splitting using annealed MXenes.  相似文献   

4.
Defect engineering is effective to extend the light absorption range of TiO2. However, the oxygen vacancy defects in TiO2 may serve as recombination centers, hampering the separation and transfer of photo-generated charges. Here, we present a strategy of in-situ depositing noble-metal (M = Ag, Au or Pt) nanoparticles (NPs) on defective 3D TiO2 hierarchical spheres (THS) with large surface area through the redox reaction between metal ions in solution and the electrons trapped at oxygen vacancies in THS. The oxygen vacancies at the THS surface are consumed, resulting in direct contact between TiO2 and noble-metal NPs, while the other oxygen vacancies in the bulk are retained to promote visible light absorption. The noble-metal NPs with well-controlled size and distribution throughout the porous hierarchical structure not only facilitate the generation of electron-hole pairs in THS due to the effect of surface plasmon-induced resonance energy transfer (SPRET) from noble-metal NPs to TiO2, but also expediate the electron transfer from TiO2 to noble-metal NPs due to the Schottky junction at the TiO2/M interface. Therefore, THS-M shows improved photocatalytic performance in water splitting compared to THS. The optimum performance is achieved on THS-Pt (13.16 mmol h−1g−1) under full-spectrum (UV–Vis) irradiation but on THS-Au (1.49 mmol h−1g−1) under visible-light irradiation. The underlying mechanisms are proposed from the surface plasmon resonance of noble-metal NPs as well as the Schottky junction at the TiO2/M interface.  相似文献   

5.
We report on the fabrication of the defect-free mixed-matrix membrane (MMM) based on the polyethylenimine (PEI) matrix with uniformly dispersed metal-organic framework (MOF) filler UiO-66-NH2, covalently bonded by polyvinylpyrrolidone (PVP). The key feature of the molecular level-controlled filler deposition in prepared UiO-66-NH2-PVP-PEI membranes was bridging the MOF particles to the PEI polymer matrix via PVP polymer chains. Such an approach improved the polymer-filler interface interactions and boosted the MOF dispersion into the polymer matrix for higher MOF loadings up to 23 wt %. The overall membrane structure and properties were characterized using FTIR, XRD, TG, DSC, SEM and 3D optical profiler techniques. Obtained results revealed the uniform dispersion of UiO-66-NH2, the strong polymer-filler interface interactions and entanglement of PEI with UiO-66-NH2-PVP. Furthermore, the outstanding CO2/H2 separation performance was determined for the UiO-66-NH2-PVP-PEI membrane with 18 wt % of MOF loading; the average CO2 permeability of 394 Barrer and the separation factor of 12 for circa 100 h of the membrane testing overcome the 2008 Robeson reverse upper bound limit. Such improved CO2/H2 separation performance was achieved due to the combination of the diffusion-solution mechanism with the preferential adsorption of the CO2 via the reversible bicarbonate reaction with amino groups of the UiO-66-NH2 and PEI which acts as fixed CO2 carrier sites in MMM structure.  相似文献   

6.
Developing photocatalysts with superior efficiency and selectivity is an important issue for photocatalytic converting CO2. Hierarchically heterostructured one-dimensional nanomaterials represent a kind of promising catalysts for photocatalytic CO2 reduction on account of the high surface area and synthetic effect between different components. Herein, we synthesized UIO-66-NH2/carbon nanotubes (CNTs) heterostructures via a hydrothermal method, and investigated their photocatalytic performance. The element mapping, X-ray diffraction, and X-ray photoelectron spectroscopy collectively confirmed that the UIO-66-NH2 was successfully loaded on the surface of the CNTs. The specific surface area of the UIO-66-NH2/CNTs is 1.5 times higher than that of UIO-66-NH2. The photocurrent and electrochemical impedance spectroscopy measurements showed that the CNTs could enhance the electron mobility and reduce the recombination of photogenerated electron-hole pairs, which was also confirmed by the Photoluminescence spectroscopy (PL). The CNTs can improve the conductivity of composites and the dispersion of UIO-66-NH2, exposing more active sites, therefore the UIO-66-NH2 can increase the absorption of carbon dioxide and thus enhance the selectivity. The composites remarkably promoted the separation and transition of electrons and thus improved the photocatalytic efficiency of CO2 reduction. More importantly, it was found that the as-prepared composites suppress the hydrogen generation reaction during the CO2 reduction process.  相似文献   

7.
The “trade-off” effect between hydroxide conductivity and dimensional stability is challenging issue for anion exchange membrane fuel cells (AEMFCs). In this study, the framework of UiO-66-NH2 is for the first time applied to anion exchange membranes (AEMs). The robust pore walls of UiO-66-NH2 with mechanical and structural durabilities protect the membrane from the excessive swelling effects (a swelling ratio of 7%). In addition, the framework of UiO-66-NH2 is directly modified into (UiO-66-NH2)+Cl as hydroxide conduction channels by anion stripping for the first time. And we construct well-organized ion nanochannels by the in-situ self-assembly of N,N,N′,N' -tetramethyl-1,6-hexanediamine (TMHDA) and allyl bromide within the highly ordered pores of (UiO-66-NH2)+Cl. The obtained QA@(UiO-66-NH2)+Cl then incorporated into pristine membrane (QAPPO) to fabricate the novel multi-channel AEMs. The hydroxide conductivity of QA@(UiO-66-NH2)+Cl/PPO is up to 123 mS⋅cm−1 at 80 °C, which is greatly improved compared to QAPPO pristine membrane.  相似文献   

8.
Metal–organic frameworks (MOFs) exhibit high proton conductivity, thermal stability, and offer immense flexibility in terms of tailoring their size. Owing to their unique characteristics, they are desirable candidates for proton conductors. Nevertheless, constructing ordered MOF proton channels in proton exchange membranes (PEMs) remains a formidable challenge. Herein, blend nanofibers of cellulose and UiO-66-NH2 (Cell–UiO-66-NH2) obtained via the electrospinning process were embedded in a sulfonated polysulfone matrix to obtain high-performance composite PEMs with an orderly arrangement of UiO-66-NH2. Comprehensive characterization and membrane performance tests reveal that composite membrane with 5 wt% (nominal) UiO-66-NH2 have revealed high proton conductivity of 0.196 S cm?1 at 80 °C and 100% relative humidity. Meantime, the composite membrane exhibits a low methanol permeability coefficient (~5.5 × 10?7 cm2 s?1). Moreover, the composite membrane exhibits a low swelling ratio (17.3%) even at 80 °C. The Cell–UiO-66-NH2 nanofibers exhibit strong potential for use as a proton-conducting nanofiller in fuel-cell PEMs.  相似文献   

9.
As an effective way to generate high-purity hydrogen through water electrolysis, electrochemical hydrogen evolution reaction (HER) underpins various clean-energy technologies. Nevertheless, most of the currently reported HER catalysts only exhibited good activity in a narrow pH range (e. g. in acid electrolyte). Thence, developing high-performance electrocatalysts for HER at all pH values is significant and imperative. Herein, we report an active electrocatalyst of RhxRu100-x@UiO-66-NH2 (x denotes the initial atomic percentage of Rh in RhRu alloys) by in-situ confining RhRu binary alloys within metal-organic framework (MOF) of UiO-66-NH2. Among the RhxRu100-x@UiO-66-NH2 samples, Rh50Ru50@UiO-66-NH2 exhibited the most outstanding HER performance at all pH values, as well as comparable activity and outperformed stability to the commercial Ru/C and Pt/C catalysts. In HER tests, Rh50Ru50@UiO-66-NH2 displayed an overpotential of 77 mV, 114 mV and 177 mV at the current density of 10 mA cm2 in 0.5 M H2SO4 (pH = 0.53), 1 M PBS (pH = 7) and 1 M KOH (pH = 14) solutions, respectively. The strategy for confining metal nanoparticles within the cavities of MOFs can enrich the toolbox for design and construction of low cost, efficient, and environment-friendly catalysts for hydrogen production toward clean energy applications.  相似文献   

10.
Deposition of Pt NPs with preferred dispersion and morphologies on TiO2 have been the focus of studies in photocatalytic and photoelectrochemical hydrogen production. Green synthesis of TiO2/Pt NPs nanocomposites with narrow size distribution of Pt NPs still remain a challenge. Herein, we report that sucrose is highly efficient for the preparation of well-dispersed TiO2/Pt NPs photocatalysts. Moreover, the sucrose could act as an electron donor, showing higher hydrogen production activity under simulated sunlight than pure water. The as-synthesized photocatalysts have been characterized by techniques of transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX), and diffuse reflectance spectroscopy (DRS). Compared with TiO2/Pt NPs photocatalysts prepared through conventional photodeposition, the photocatalysts as prepared showed higher photocatalytic efficiency. Moreover, the catalyst could be reused easily without apparent degradation of their original photocatalytic activities. This approach presents a promising and low-cost strategy to improve the photocatalytic performance of TiO2 from biomass.  相似文献   

11.
ZnO, as a typical n-type semiconductor catalyst with low cost and high electron mobility, is concerned by numerous pursuers in the field of photocatalysis. However, because of its poor photo-reduction ability and high recombination rate, the ZnO in photocatalytic H2 evolution is greatly limited. To acquire an outstanding photocatalytic H2 evolution performance, 3D ordered macroporous (3DOM) ZnO is sulfurized in-situ to construct 3DOM ZnS@ZnO heterostructure. The ordered macroporous structure not only accelerates the migration of electrons and ions but also curtails the shift space of electrons and holes. The multi-junction assemblage between ZnO and ZnS effectively decreases the recombination of electron-hole pairs and improves the photo-redox capacity. The 3DOM Pt/ZnS@ZnO heterostructure exhibiting an excellent performance is 87.6 μmol g?1 h?1 in pure water. Therefore, our research presents an innovative procedure for designing other porous heterostructure photocatalysts.  相似文献   

12.
Highly active and durable Pt-based catalysts for oxygen reduction reaction (ORR) are very important and necessary for the proton exchange membrane fuel cells (PEMFCs). In this paper, we report the preparation and performance study of ORR catalysts composed of core-shell Pt–Co alloy nanoparticles (NPs) on multi-walled carbon nanotubes (MWCNTs) anchored with ZrO2 NPs (denoted as Pt–Co–ZrO2/MWCNTs). Thanks to the unique three-phase structure, the mass activity of Pt–Co–ZrO2/MWCNTs for ORR at 0.9 V versus reversible hydrogen electrode (RHE) is1577 mA mgPt?1, which is ~6.6-fold higher than that of the commercial Pt/C (238 mA mgPt?1). After 50,000 cycles for durability test, the mass activity of Pt–Co–ZrO2/MWCNTs for ORR remained 88% of its initial value. In stark contrast, that of Pt/C kept only about 56.3% of its initial value. More importantly, its catalytic performance was fully observed/verified in a H2-air PEMFC single cell test. When the Pt loading of Pt–Co–ZrO2/MWCNTs loaded cathode was one fourth of that with commercial Pt/C as the cathode catalyst, comparable cell performance was achieved. More impressively, the MEA with Pt–Co–ZrO2/MWCNTs underwent only 24.5% degradation in maximum power density after 30,000 accelerated durability tests (ADTs). However, the MEA with Pt/C after 30,000 ADTs exhibited 39.6% performance loss in maximum power density. The enhanced mass activity and catalytic durability of Pt–Co–ZrO2/MWCNTs could be attributed to the core-shell Pt–Co alloy NPs with Pt-rich surface and the interface effect between Pt–Co alloy NPs and oxygen vacancy-rich ZrO2 NPs. In addition, this research also provided a solution to the durability issue of cathodes without sacrificing ORR mass activity, which would promote practical application of PEMFCs.  相似文献   

13.
We report on a concept of co-pelletization using mechanically robust hydroxylated UiO-66 to develop a metal-organic framework (MOF) monolith that contains 5 wt% electrospun polymer nanofibers, and consists of an architecture with alternating layers of MOF and nanofiber mats. The polymers of choice were the microporous Polymer of Intrinsic Microporosity (PIM-1) and non-porous polyacrylonitrile (PAN). Co-pelletized UiO-66/PIM-1 and UiO-66/PAN monoliths retain no less than 85% of the porosity obtained in pristine powder and pelletized UiO-66. The composition of the pore size distribution in co-pelletized UiO-66/PIM-1 and UiO-66/PAN monoliths is significantly different to that of pristine UiO-66 forms, with pristine UiO-66 forms showing 90% of the pore apertures in the micropore region and both UiO-66/nanofiber monoliths showing a composite micro-mesoporous pore size distribution. The co-pelletized UiO-66/nanofiber monoliths obtained improved useable H2 capacities in comparison to pristine UiO-66 forms, under isothermal pressure swing conditions. The UiO-66/PIM-1 monolith constitutes the highest gravimetric (and volumetric) useable capacities at 2.3 wt% (32 g L?1) in comparison to 1.8 wt% (12 g L?1) and 1.9 wt% (29 g L?1) obtainable in pristine UiO-66 powder and UiO-66 pellet, respectively. The co-pelletized UiO-66/PAN monolith, however, shows a significantly reduced surface area by up to 50% less in comparison to pristine UiO-66, but its pore volume only 13% less in comparison to pristine UiO-66. As a result, total gravimetric H2 capacity of the co-pelletized UiO-66/PAN monolith is 50% less in comparison to that of pristine UiO-66, but crucially the useable volumetric H2 capacity is 50% higher for the UiO-66/PAN monolith in comparison to pristine UiO-66 powder. The co-pelletization strategy provides a simple method for generating hierarchical porosity into an initially highly microporous MOF without changing the structure of the MOF through complex chemical modifications. The UiO-66/nanofiber monoliths offer improvements to the typically low H2 useable capacities in highly microporous MOFs, and open new opportunities towards achieving system-level H2 storage targets.  相似文献   

14.
The practical applications of graphitic carbon nitride (g-C3N4) for photocatalytic hydrogen evolution is strictly hindered by the low surface area, poor light harvesting capability and detrimental recombination of photoexcited charge carriers. Herein, using melamine as precursor and metal hydride (i.e., CaH2) as active agent, we facilely incorporate various types of defects (i.e., nitrogen (N) vacancies (VN), cyano groups (CN) and surface absorbed oxygen species(Oabs)) into g-C3N4 within a single step. The as-prepared material (denoted as MM-H) exhibits narrowed bandgap, promoted photoexcited electron-hole separation rate and facilitated charge transfer kinetics with enlarged BET surface area and massive porosity. As a result, a prominently enhanced photocatalytic H2 productivity efficiency (1305.9 μmol h−1g−1) is shown on MM-H. This performance is better than that of g-C3N4 with CaH2 post-treatment (617.3 μmol h−1g−1) and raw bulk-C3N4 (178.2 μmol h−1g−1). This work opens up a new dimension for designing high performance g–C3N4–based catalysts targeting various photocatalytic processes.  相似文献   

15.
Vacancies engineering was widely reported as the promising strategy for the improvement of the photocatalytic performance of semiconductor photocatalysts. In current work, carbon vacancies are constructed successfully in graphitic carbon nitride (g-C3N4) photocatalyst via magnesium vapor etching. Experimental results show that the formed carbon vacancies in g-C3N4 photocatalyst can significantly improve the photocatalytic H2 generation performance. XRD, FTIR, SEM/TEM, XPS and PL characterization data are employed to evidence the construction of carbon vacancies, which are revealed to be the reason for the enhancement of photocatalytic H2 evolution. This work develops an alternative route to construct carbon vacancies in g-C3N4 materials and gives an insight into the influence of vacancies on the photocatalytic performance of photocatalysts.  相似文献   

16.
In-situ generation of platinum nanoparticles (Pt NPs) supported on graphitic carbon nitride/amorphous tungsten oxide (gCN/a-WOx) binary heterojunctions under white-light irradiation was performed during the hydrolysis of ammonia borane (HAB). The gCN/a-WOx/Pt(IV) nanocomposites including different amount of W were prepared to study their comparative photocatalysis for the photocatalytic HAB. The yielded gCN/a-WOx/Pt nanocatalysts provided a maximum turnover frequency (TOF) value of 419.2 mol H2 mol Pt−1 min−1, which is higher than that of gCN/Pt nanocatalysts (287.7 mol H2 mol Pt−1 min−1). Many advanced analytical techniques comprising ICP-MS, TEM, HAADF-STEM, XRD, XPS, EDX, and BET were used to determine the elemental composition, morphology, elemental distribution, crystal structure, chemical/oxidation state of the surface elements and the textural properties of the nanocatalysts. The characterization results support the formation of wrinkled paper-like amorphous phase WOx (a-WOx) materials in multiple oxidation states over the gCN nanosheets. The photophysical properties of gCN/a-WOx nanocomposites were also analyzed by using UV–Vis DRS, PL, and TRES techniques to clarify the contribution of the heterojunction formation between gCN and a-WOx semiconductors to the photocatalytic activity. Owing to the enhanced visible light absorption, suppressed charge recombination, and promoted charge carrier transfer, gCN/a-WOx/Pt nanocatalysts boosted the hydrogen production from the HAB under white-light irradiation by providing 419.2 mol H2 mol Pt−1 min−1 TOF, which is 4.8 times higher compared to the one obtained in dark. A plausible photocatalytic mechanism for the photocatalytic HAB reaction in the presence of gCN/a-WOx/Pt nanocatalysts was suggested based on the results of performed scavenger experiments. The rate law and the activation parameters for the of gCN/a-WOx/Pt catalyzed HAB were also reported along with kinetic studies. Additionally, a reusability test was performed to understand the stability of gCN/a-WOx/Pt nanocatalysts in the HAB such that the significance of a-WOx species in the enhancement of photocatalytic activity became more pronounced. This study reports for the first time that gCN/a-WOx heterojunctions are favorable support materials for the in-situ generation of Pt NPs and promoting the photocatalytic activity of Pt NPs in the hydrogen generation from the HAB under white-light illumination.  相似文献   

17.
Anatase titanium dioxide (TiO2) nanocrystals with different percentages (up to 95%) of exposed {101} facet and different concentration ratios of bulk single-electron-trapped oxygen vacancies (SETOVs) to surface oxygen vacancies (SOVs) were prepared by alcohol-thermal method with nanotube titanic acid as the precursor in combination with solid-state reduction by NaBH4. The as-prepared TiO2 nanocrystals were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin resonance spectroscopy, and ultraviolet–visible light spectrometry. The effects of the percentage of crystal facets and the concentration ratio of bulk SETOVs/SOVs on the photocatalytic hydrogen production rate of TiO2 nanocrystals were investigated with positron annihilation lifetime spectroscopy as well as photocurrent test. Findings indicate that the percentage of the exposed {101} facets of the as-prepared TiO2 nanocrystals and their concentration ratios of bulk SETOVs/SOVs can be well tuned by properly adjusting the amount of NaBH4 and the reduction reaction time as well. Increasing percentage of the {101} facet of anatase TiO2 nanocrystals contributes to improving their photocatalytic hydrogen production activity, because the {101} facets of the anatase TiO2 nanocrystals possess enriched electrons and can act as the reduction sites to enhance the reduction reaction of H+ affording H2 in the sacrifice system of splitting water. Both the bulk SETOVs and SOVs contribute to the improvement of the light absorption while SOVs can facilitate the separation of photogenerated charges, thereby adding to the photocatalytic activity. However, the bulk SETOVs and excessive SOVs are also the combination centers of photogenerated charges, which means it is essential to maintain a suitable concentration ratio of the bulk SETOVs/SOVs so as to enhance the light absorption and achieve the best separation efficiency of photogenerated charges and achieve the best photocatalytic activity for hydrogen production. Particularly, when anatase TiO2 nanocrystal with a high percentage (95%) of exposed {101} facet is reduced by NaBH4 at a mass ratio of 2: 1 for 20 min, the resultant reduced H-TiO2 nanocrystal (denoted as H-TiO2-R20(2:1)) provides the highest photocatalytic hydrogen productive rate. Furthermore, the combination of 0.5% Pt/H-TiO2-R20(2:1) with 0.5% Pt/WO3 can split water to simultaneously produce H2 and O2, showing promising potential for splitting water affording hydrogen and oxygen.  相似文献   

18.
High efficient hydrogen evolved Ni-doped Zn(O,S) photocatalyst with different Ni amounts had been successfully synthesized with a simple method at low temperature. Our Ni-doped Zn(O,S) catalyst reached the highest hydrogen generation rate of 14,800 μmol g?1 h?1 or 0.92 mmol g?1 h?1 W?1 corresponding to apparent quantum yield 31.5%, which was 2.3 times higher compared to the TiO2/Pt used as a control in this work. It was found that a small amount of Ni doped into Zn(O,S) nanoparticles could increase the optical absorbance, lower the charge transfer resistance, accordingly decrease the electron-hole recombination rate, and significantly enhance the photocatalytic hydrogen evolution reaction (HER). The as-prepared catalyst has the characteristics of low cost, low power consumption for activating the catalytic HER, abundant and environmental friendly constituents, and low surface oxygen bonding for forming oxygen vacancies. The photocatalytic performance of Ni-doped Zn(O,S) was demonstrated with a proposed kinetic mechanism in this paper.  相似文献   

19.
Metal organic frameworks (MOF) are a type of nanoporous materials with large specific surface area, which are especially suitable for gas separation and storage. In this work, we report a new approach of crosslinking UiO-66-(OH)2 to enhance its hydrogen storage capacity. UiO-66-(OH)2 was synthesized using hafnium tetrachloride (HfCl4) and 2, 5-dihydroxyterephthalic acid (DTPA) through a canonical modulated hydrothermal method (MHT), followed by a post-synthesis modification, which is to form a crosslinking structure inside the porous structure of UiO-66-(OH)2. During the modification process, the phenolic hydroxyl groups on the UiO-66-(OH)2 reacted with methanal, and HCl aqueous solution and triethylamine served as catalyst (the products denoted as UiO-66-H and UiO-66-T, respectively). Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance spectroscopy (13C NMR) proved that the crosslinking was formed. The BET specific surface area and the average adsorption pore size of UiO-66-H and UiO-66-T significantly increased after modification. The hydrogen storage capacity of UiO-66-H reached a maximum of 3.37 wt% (16.87 mmol/g) at 77 K, 2 MPa. Hydrogen adsorption enthalpy of UiO-66-T was 0.986 kJ/mol, which was higher than that of UiO-66-(OH)2 (0.695 kJ/mol). This work shows that UiO-66-(OH)2 is a promising candidate for potential application in high-performance hydrogen storage.  相似文献   

20.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号