首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results of systematic experiments on deflagration-to-detonation transition (DDT) in homogeneous ethylene–hydrogen–air mixtures at normal pressure and temperature conditions are reported. Experiments are performed in a pulse-detonation tube of three different configurations with one open end. Hydrogen content and fuel-to-air equivalence ratio in the mixture are varied from 0 to 100% and from 0.5 to 3.5, respectively. The measured DDT run-up distance and time are shown to sharply decrease only at hydrogen content exceeding 70%vol. in the tube of all three configurations. The observed effect is explained by multidirectional influence of hydrogen addition on the mixture physicochemical properties relevant to the DDT phenomenon.  相似文献   

2.
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical, complete transition from conventionally-fueled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between ?179 and +95 MtCO2eq annually, depending on the scenario, with renewable-powered electrolysis leading to the greatest emissions reduction, while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly, indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually, requiring 446–525 TWh for electrolysis, hydrogen transport and storage, which could be supplied by future German renewable generation, supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals, warranting further research and political discussion about this possibility.  相似文献   

3.
rotating direction of detonation waves is one of the essential characteristics of the unsteady flow fields in the rotating detonation combustors (RDCs). However, it changes over time and is challenging to predict. Pre-detonator is commonly used to initiate the RDC in experiments. Intuitively, the detonation wave should continue in the direction of the pre-detonator. Unfortunately, experimental results often contradict this expectation. Three-dimensional numerical simulations of a rotating detonation combustor installed with a pre-detonator are performed in the present study. The numerical experiments show that the pre-detonator induces two counter-rotating detonation waves in the annular chamber and fails in fixed-direction initiation. Furthermore, we propose an active direction control method in the present study. This method utilizes the pre-detonator as a control device and successfully regulates the detonation waves along the pre-detonator direction. The active direction control method allows adjusting the propagating direction of detonation waves anytime during the RDC operation. By this method, multiple waves tend to be produced in the flow field, enhancing the stability of the rotating detonation combustor.  相似文献   

4.
The detonation wave in a rotating detonation engine is highly adaptable to the incoming flow, making the wave easier to control. In this study, a numerical simulation method is used to analyze the working process and flow field structure of a rotating detonation model engine with dual cavity injection of an H2/air mixture by controlling the injection pressure ratio of the dual cavity and the number of detonation wave heads. It is found that the rotating detonation engine offers the possibility to control the thrust vector with two different modes. The first is a one-cycle alternate control mode with a small injection pressure ratio. Here two deflections occur in different directions occur across one detonation wave propagation cycle, but the overall deflection direction is in the low-pressure region. The second is a one-way control mode, with a large injection pressure ratio, and the deflection direction towards the low-pressure region. For the multi wave-mode, it belongs to one-way control mode because of constant deflection direction in the low-pressure area. From the perspective of thrust distribution along the circumference, the one-way control strategy satisfies the ability of a rotating detonation thrust vector control.  相似文献   

5.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

6.
The accidental release of hydrogen into enclosures can result in a flammable mixture with concentration gradients and possible deflagration-to-detonation transition (DDT). This numerical study aims to investigate the effect of obstacle spacing and mixture concentration on the DDT in a homogeneous and inhomogeneous hydrogen-air mixture. The paper focuses on the mechanisms behind the DDT in two mixtures with an average hydrogen concentration of 15% and 30%. Unlike the near-stoichiometric mixture, in the lean mixture, DDT only occurs in the inhomogeneous mixture. Depending on obstacle spacing, three different regimes of DDT were observed in the near-stoichiometric inhomogeneous mixture: i) Detonation was ignited when a strong Mach stem formed and propagated between the obstacles; ii) two explosion centers appeared when incident shock and Mach stem reflected from upper and lower obstacles, respectively; iii) Mach stem did not form but DDT occurred behind the flame front at the top of the obstacle.  相似文献   

7.
In this work a techno economic feasibility study is carried out to implement a Hydrogen based Power to Gas to Power (P2G2P) in a Microgrid, located in a rural area in Baja California, Mexico. The study aims to define the feasibility to store energy throughout seasons with this novel alternative using an electrolyzer to produce green hydrogen from excess renewable energy in winter, to store it during months and re inject it to the grid as electricity by a fuel cell in the high energy demanding season. The Microgrid was modeled in Homer software and simulations of the P2G2P lead to Levelized Cost of Energy data to compare between the P2G2P scenarios and the current diesel-battery based solution to complete the high demand by the community. This study shows that using hydrogen and fuel cells to substitute diesel generators it is possible to reduce CO2 emissions up to a 27% and that in order for the P2G2P to be cost competitive, the fuel cell should reduce its cost in 50%; confirming that, in the medium to long term, the hydrogen storage system is a coherent alternative towards decarbonization of the distributed energy generation.  相似文献   

8.
9.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

10.
Applicability of multiwall carbon nanotubes (MWCNTs) decorated with palladium nanoparticles as sensitive layer in a resistive microsensor for identification of hydrogen isotopes, Deuterium (2H) and Protium (1H), has been demonstrated. Palladium nanoparticles were anchored on the MWCNTs surface via a chemical process involving micellization, from a precursor chloride solution, in high ultrasonic density field. Pd-MWCNTs are quasi-aligned between the interdigitated gold electrodes of a SiO2 substrate by drop casting and di-electrophoretic alignment in Tetrahydrofuran (THF) and Nafion solution. The morphostructural characterization of the sensitive material has been carried out through SEM, TEM and Raman spectroscopy and its gas sensing properties were evaluated using electrical measurements performed on a series of isotope concentrations (ranging from 0.1% up to 1%, and from 1% to 4%, value to which hydrogen becomes explosive) diluted in argon, to observe the evolution of the sensor sensibility. The two hydrogen isotopes have different behaviors related to the adsorption on the Pd-MWCNT, which is well observed in the resistance change. Therefore, the sensor based on Pd-MWCNTs could be a viable solution to be integrated in systems for hydrogen leakage detection.  相似文献   

11.
In this paper, the performance of a solar gas turbine (SGT) system integrated to a high temperature electrolyzer (HTE) to generate hybrid electrical power and hydrogen fuel is analyzed. The idea behind this design is to mitigate the losses in the electrical power transmission and use the enthalpy of exhaust gases released from the gas turbine (GT) to make steam for the HTE. In this context, a GT system is coupled with a solar tower including heliostat solar field and central receiver to generate electrical power. To make steam for the HTE, a flameless boiler is integrated to the SGT system applying the SGT extremely high temperature exhaust gases as the oxidizer. The results indicate that by increasing the solar receiver outlet temperature from 800 K to 1300 K, the solar share increases from 22.1% to 42.38% and the overall fuel consumption of the plant reduces from 7 kg/s to 2.7 kg/s. Furthermore, flameless mode is achievable in the boiler while the turbine inlet temperature (TIT) is maintained at the temperatures higher than 1314 K. Using constant amounts of the SGT electrical power, the HTE voltage decreases by enhancing the HTE steam temperature which result in the augmentation of the overall hydrogen production. To increase the HTE steam temperature from 950 K to 1350 K, the rate of fuel consumption in the flameless boiler increases from 0.1 m/s to 0.8 m/s; however, since the HTE hydrogen production increases from 4.24 mol/s to 16 mol/s it can be interpreted that the higher steam temperatures would be affordable. The presented hybrid system in this paper can be employed to perform more thermochemical analyses to achieve insightful understanding of the hybrid electrical power-hydrogen production systems.  相似文献   

12.
The catalysts used to facilitate the water gas shift reaction (WGSR) are generally harmful to the environment. Therefore, catalysts that have high activity and stability in WGSR and do not pollute the environment need to be fabricated. Herein, three promoters (La, Pr, and Zr) are added into Co–CeO2 (CoCe) catalyst to improve catalytic performance in a high temperature WGSR to produce high-purity hydrogen from waste-derived synthesis gas. Various techniques are employed to confirm the changes in the properties that affect the catalytic performance. The catalytic reaction is performed at a high gas hourly space velocity to screen the performance of the promoted CoCe catalysts. The CoCeZr catalyst shows the highest CO conversion (XCO = 88% at 450 °C) due to its high Co dispersion and oxygen vacancy resulting from the addition of Zr to the CoCe catalyst; thus, it is most suitable for use in high temperature WGSR.  相似文献   

13.
The propagation characteristics of the detonation wave in the bifurcated tube with the angular variation range of 30°–90° are simulated with 25% AR as dilution gas for H2/O2 mixture fuel at chemical equivalence ratio using the solver DCRFoam built on the OpenFOAM platform. The diffraction and reflection phenomena of detonation waves passing through bifurcation tubes with different angles are studied and analyzed. The results show that the distance from regular reflection to Mach reflection increases with the increase of the bifurcation angle so that after one reflection, the detonation forms three reflection forms with the angle of the different bifurcation tubes. After the first reflection, the detonation waves are more likely to induce the formation of transverse waves in the low-angle bifurcation tube. The lowest collision pressure after the detonation collides with the upper wall to form a secondary reflection occurs in the bifurcation tube between 50° and 60°.  相似文献   

14.
This paper deals with the emission reduction in synthesis-gas production by better integration and increasing the energy efficiency of a high-temperature co-electrolysis unit combined with the Fischer-Tropsch process. The investigated process utilises the by-product of Fischer-Tropsch, as an energy source and carbon dioxide as a feedstock for synthesis gas production. The proposed approach is based on adjusting process streams temperatures with the further synthesis of a new heat exchangers network and optimisation of the utility system. The potential of secondary energy resources was determined using plus/minus principles and simulation of a high-temperature co-electrolysis unit. The proposed technique maximises the economic and environmental benefits of inter-unit integration. Two scenarios were considered for sharing the high-temperature co-electrolysis and the Fischer-Tropsch process. In the first scenario, by-products from the Fischer-Tropsch process were used as fuel for a high-temperature co-electrolysis. Optimisation of secondary energy sources and the synthesis of a new heat exchanger network reduce fuel consumption by 47% and electricity by 11%. An additional environmental benefit is reflected in emission reduction by 25,145 tCO2/y. The second scenario uses fossil fuel as a primary energy source. The new exchanger network for the high-temperature co-electrolysis was built for different energy sources. The use of natural gas resulted in total annual costs of the heat exchanger network to 1,388,034 USD/y, which is 1%, 14%, 116% less than for coal, fuel oil and LPG, respectively. The use of natural gas as a fuel has the lowest carbon footprint of 7288 tCO2/y. On the other hand, coal as an energy source has commensurable economic indicators that produce 2 times more CO2, which can be used as a feedstock for a high-temperature co-electrolysis. This work shows how in-depth preliminary analysis can optimise the use of primary and secondary energy resources during inter-plant integration.  相似文献   

15.
The South Korean government promotes hydrogen-powered vehicles to reduce greenhouse gas (GHG) emissions but these vehicles use gray hydrogen while charging, which causes GHG emissions. Therefore, converting this fuel into green hydrogen is necessary to help reduce GHG emissions, which will incur investment costs of approximately USD 20 billion over a decade. In this study, a contingent valuation method is applied in an analysis to examine the extent to which consumers are willing to pay for green hydrogen charging compared to gray hydrogen charging. The results indicate that the monthly mean of willingness to pay per driver is 51,674 KRW (USD 45.85), equivalent to 4302 KRW per kg (USD 3.82). Additionally, consumers accept a 28.5% increase in the monthly average fuel expenses when converting to green hydrogen. These findings can be used in the development of pricing and energy use plans to finance the expansion of green hydrogen infrastructure.  相似文献   

16.
Fluorene (H0-F) and perhydrofluorene (H12-F) represent process-related byproducts formed by a dehydrocyclization step in the liquid organic hydrogen carrier (LOHC) system based on diphenylmethane (H0-DPM) and dicyclohexylmethane (H12-DPM). The influence of these byproducts on the liquid viscosity, surface tension, and liquid density of the DPM-based system was experimentally determined by studying three dehydrogenated binary mixtures with H0-F mole fractions of 0.05, 0.10, and 0.20 as well as one hydrogenated binary mixture with an H12-F mole fraction of 0.10 close to 0.1 MPa from (283–573) K. The densities increase with increasing share of H0-F or H12-F by around 1% per added byproduct mole fraction of 0.1. For the surface tension, an increase relative to the values of H0-DPM or H12-DPM by up to 6% is found. The addition of H0-F to H0-DPM or H12-F to H12-DPM yields a relative increase in viscosity by up to 9% at the lowest temperature studied.  相似文献   

17.
The decomposition of formic acid is studied in a continuous sub- or supercritical water reactor at temperatures between 300 and 430 °C, a pressure of 25 MPa, residence times between 4 and 65 s, and a feedstock concentration of 3.6 wt%. In situ Raman spectroscopy is used to produce real-time data and accurately quantify decomposition product yields of H2, CO2, and CO. Collected spectra are used to determine global decomposition rates and kinetic rates for individual reaction pathways. First-order global Arrhenius parameters are determined as log A (s−1) = 1.6 ± 0.20 and EA = 9.5 ± 0.55 kcal/mol for subcritical decomposition, and log A (s−1) = 12.56 ± 1.96 and EA = 41.90 ± 6.08 kcal/mol for supercritical decomposition. Subcritical and supercritical Arrhenius parameters for individual pathways are proposed. The variance in rate parameters is likely due to changing thermophysical properties of water across the critical point. There is strong evidence for a surface catalyzed free-radical mechanism responsible for rapid decomposition above the critical point, facilitated by low density at supercritical conditions.  相似文献   

18.
High-entropy alloy (HEA) AlCoCrFeNiV nanoparticles were prepared from oxide precursors using a molten salt synthesis method without an electrical supply. The oxide precursor was directly reduced by CaH2 reducing agent in molten LiCl at 600°C-700°C or molten LiCl–CaCl2 at 500°C-550°C. When the reduction was conducted at 700°C, a face-centered cubic (FCC) structure produced, as identified by X-ray diffraction analysis. With lower reduction temperatures, the FCC structure was absent, replaced by a body-centered cubic (BCC) structure. With a reduction temperature of 550°C, the resulting sample was composed of highly pure HEA AlCoCrFeNiV nanoparticles with a BCC structure of 15 nm. Analyses by scanning electron microscopy/transmission electron microscopy with energy-dispersive X-ray spectroscopy confirmed the formation of homogeneous HEA AlCoCrFeNiV with a nanoscale morphology. In the hydrogenation reaction of p-nitrophenol by NaBH4, the AlCoCrFeNiV nanoparticles (produced at 550°C) exhibited a catalytic activity with ~90% conversion and 16 kJ/mol activation energy.  相似文献   

19.
Carbon nanostructure materials are becoming of considerable commercial importance, with interest growing rapidly over the decade since the discovery of carbon nanofibers. In this study, a new novel method is introduced to synthesize the carbon nanofibers by gas-phase, where a single-stage microwave-assisted chemical vapour deposition approach is used with ferrocene as a catalyst and acetylene and hydrogen as precursor gases. Hydrogen flow rate plays a significant role in the formation of carbon nanofibers, as being the carrier and reactant gas in the floating catalyst method. The effect of process parameters such as microwave power, radiation time and gas ratio of C2H2/H2 was investigated statistically. The carbon nanofibers were characterized using scanning and transmission electron microscopy and thermogravimetric analysis. The analysis revealed that the optimized conditions for carbon nanofibers production were microwave power (1000 W), radiation time (35 min) and acetylene/hydrogen ratio (0.8). The field emission scanning electron microscope and transmission electron microscope analyses revealed that the vertical alignment of carbon nanofibers has tens of microns long with a uniform diameter ranging from 115 to 131 nm. High purity of 93% and a high yield of 12 g of CNFs were obtained. These outcomes indicate that identifying the optimal values for process parameters is important for synthesizing high quality and high CNF yield.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号