首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, an effective design strategy for anion exchange membranes (AEMs) incorporating ether-bond free and piperidinium cationic groups promote chemical stability. A series of poly (isatin-piperidium-terphenyl) based AEMs were synthesized by superacid catalyzed polymerization reaction, followed by quaternization. The effect of functionalization on the performance of poly (isatin-N-dimethyl piperidinium triphenyl) (PIDPT-x) AEMs was investigated. Highly reactive N-propargylisatin was introduced into the backbone to achieve high molecular weight polymers (ηa = 2.06–3.02 dL g1) leading to robust mechanical properties, as well as modulating 1.78–2.00 mmol g−1 of the ion exchange capacity (IEC) of the AEMs by feeding. Apart from that, the rigid non-ionized isatin-terphenyl segment provides AEMs improved dimensional stability with a swelling ratio of less than 12% at 80 °C. Among them, PIDPT-90 exhibited a higher OH conductivity of 105.6 mS cm−1 at 80 °C. The alkali-stabilized PIDPT-85 AEM was presented, in which OH conductivity retention maintained 85.6% in a 2 M NaOH at 80 °C after 1632 h. Afterward, the direct borohydride fuel cells (DBFC) with PIDPT-90 membrane as a separator showed an open-circuit voltage of 1.63 V and a peak power density of 75.5 mWcm−2 at 20 °C. This work demonstrates the potential of poly (isatin- N-dimethyl piperidinium triphenyl) as AEM for fuel cells.  相似文献   

2.
Issues of unsatisfactory ionic conductivity and chemical stability should be solved for anion exchange membranes (AEMs) in practical fuel cell applications. A series of flexible spacers, homologous multi-cationic cross-linkers with different lengths, were designed and synthesized from 1,4-diazabicyclo(2.2.2)octane (DABCO) and 1,6-dibromohexane, and subsequently used to fabricate a series of flexible multi-cationic cross-linked poly(aryl ether sulfone) (CQPAES) AEMs. The CQPAES membranes fabricated by simultaneous cross-linking and membrane formation are tough and pliable. The length and number of cations of the cross-linkers show noticeable effects on the comprehensive membrane performance. The CQPAES membranes display more distinct nano-phase separation morphology and well-developed ion transfer channels due to the higher mobility and hydrophilicity of the flexible long-chain multi-cationic segments. As a result, the CQPAES membranes exhibit gradually increased water uptake and ionic conductivity with the increase of cross-linker length. Furthermore, DABCO and hexyl segments in the cross-linker greatly enhance the steric hindrance and electron cloud density of the quaternary ammonium groups, which inhibit the Hoffmann elimination reaction. Consequently, the CQPAES membranes display a significant improvement in alkali stability than conventional benzyl-substituted quaternary ammonium group type AEMs.  相似文献   

3.
Poly(arylene ether sulfone) ionomers containing fluorenyl groups and functionalized with benzyltrimethylammonium groups were synthesized through polycondensation, chloromethylation, and amination reactions. The resulting polymers were characterized by 1H NMR, FT-IR and TGA. Polymer membranes were solvent cast from DMF on Teflon plates to form clear, flexible anion exchange membranes (AEMs). Carbonate anions had conductivities in the AEMs up to 63.12 mS cm−1 at 70 °C and were used in a carbonate fuel cell. The membranes were stable in 1 M carbonate solution (pH 11). However, conductivity loss was observed during soaking in 1 M hydroxide solution (pH > 14) at 50 °C. A carbonate fuel cell operating at room temperature with H2 at the anode and O2 and CO2 at the cathode had a maximum power density of 4.1 mW cm−2.  相似文献   

4.
Poly(arylene ether sulfone)s with tetra(quaternary ammonium) hydroxide groups in the repeating unit of the polymer main chain were prepared for solid alkaline exchange membrane fuel cells. We synthesized a novel monomer with four amine groups which were derivatized to ammonium functional groups. Using this monomer, we easily synthesized poly(arylene ether sulfone)s which conduct hydroxyl ions. This direct synthetic method can control the exact amount of quaternary ammonium hydroxide groups in the polymer structure. The polymers were characterized by NMR, thermogravimetric analysis, water uptake, conductivity, and cell performance. In a solid alkaline exchange membrane fuel cell test, a maximum power output of 77 mW cm−2 was achieved using hydrogen and oxygen.  相似文献   

5.
To develop anion exchange membranes with excellent chemical stability and high performance. A series of quaternary ammonium functionalized (hydrophilic) hydrophobic rigid poly (carbazole-butanedione) (HOCB-TMA-x) anion exchange membranes were prepared, where x represents the percentage content of hydrophobic unit octylcarbazole (OCB). Due to the introduction of hydrophobic rigid unit octylcarbazole and hexyl flexible side chain, the hydrophilic-hydrophobic microstructure of AEMs was developed. The AEMs exhibit excellent overall performance, specifically the low swelling ratio HOCB-TMA-30 membrane exhibits the highest OH? conductivity of 152.9 mS/cm at 80 °C. Furthermore, the ionic conductivity of AEM decreased by only 9.5% after 2250 h of immersion in 1 M NaOH. The maximum peak power density of a single cell with a current density of 4.38 A/cm2 at 80 °C was 1.85 W/cm2.  相似文献   

6.
A new approach is presented here for constructing higher-performance anion exchange membranes (AEMs) by combining block-type and comb-shaped architectures. A series of quaternization fluorene-containing block poly (arylene ether nitrile ketone)s (QFPENK-m-n) were synthesized by varying the length of hydrophobic segment as AEMs. The well-designed architecture, which involved grafting comb-shaped C10 long alkyl side chains onto the block-type main chains, formed efficient ion-transport channels, as confirmed by atomic force microscopy. As a result, the AEMs showed high hydroxide conductivities in the range of 34.3–102.1 mS⋅cm−1 from 30 to 80 °C at moderate ion exchange capacities (IECs). Moreover, the hydrophobic segment with nitrile groups also exhibited a profound anti-swelling property for the AEMs, resulting in ultralow swelling ratios ranging from 4.7% to 7.1% at 30 °C and 7.5%–9.8% at 80 °C, as well as superb conductivity-to-swelling ratios at 80 °C. In addition, the AEMs displayed good mechanical properties, thermal and oxidative stability, and optimizable alkaline stability.  相似文献   

7.
A study of radiation grafted polymers on the conductivity and performance of alkaline anion exchange membrane fuel cells (AAEMFCs) is reported. The aminated poly (LDPE-g-VBC), poly (HDPE-g-VBC) and poly (ETFE-g-VBC) membranes were produced by the using the radiation grafting technique. Differences in grafting behaviour are observed between the studied materials caused by differences in the base polymer film properties as molar mass, crystallinity, orientation or grafting technique used. In plane conductivities increased with Degree of Grafting DoG. At a DoG of 68% the LDPE-g-VBC membrane achieved an in-plane ionic conductivity between 0.18 and 0.32 S cm−1 in the temperature range 20–80 °C. Measured through plane conductivities were lower than that of the in plane ones for all studied membranes. Membranes with the highest degree of swelling showed the highest through plane conductivity of 0.07–0.11 S cm−1. The membrane specific resistance (per MEA cm2) of most of the produced membranes was in the range of 0.09–0.18 Ω cm2. While membrane conductivity and hence IR loss is a crucial factor in fuel cell performance, membrane water permeability is a similarly crucial key for optimised water transport to the cathode. The main source of performance loss of AAEMFCs is believed to be restricted mass transport of water to the cathode reaction sites. The highly humidified anode stream along with large amount of water produced at the anode at high current densities could lead to flooding if water is not removed quickly to the cathode via the membrane (back diffusion) where it is consumed.  相似文献   

8.
Using the step-growth polycondensation reaction, poly(arylene ether ketone) (PAEK) and activated poly(arylene ether ketone)-NHS intermediates (PAEK-N) were synthesized. PAEK-NHS intermediates with pyridinium groups (PAEK-PYR) were obtained by adding different amounts of PYR groups. The successful syntheses of PAEK, PAEK-N, and PAEK-PYR were confirmed by nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. Several important membrane properties (e.g., ionic exchange capacity (IEC), water uptake, anion conductivity, and thermal and mechanical stability) were investigated for their applications in alkaline fuel cells. Water uptake, swelling ratio, anion conductivity, and IEC increased with increasing PYR contents, while the mechanical properties decreased. Among a series of prepared membranes, the PAEK-PYR100 and PAEK-PYR125 membranes showed IEC and anion conductivity values that were higher than those of a commercial AHA membrane. Also, all of the prepared membranes were thermally stable up to 255 °C and show excellent chemical stability in alkaline conditions.  相似文献   

9.
The energy distribution of the world is in a critical transition from traditional fossil fuel to new clean energy. Actually, the fuel cell is favored by researchers as an efficient and clean energy conversion equipment. The anion exchange membranes (AEMs) with excellent performance and long service life will become the development trend of alkaline fuel cells in the future. Compared with proton exchange membrane fuel cells (PEMFCs), its advantages of affordable price, work safety, and non-precious metal participation are widely favored by researchers. This paper reviews the performance of characteristics, synthesis methods, modification methods, and alkaline stability protection of anion-exchange polyelectrolytes (AEPs), and the current research and development status of AEPs used in AEMs are summarized. The evaluation and comparison of different types of AEPs and AEMs based on different AEPs are put forward. This review is expected to further deepen the understanding of AEPs in AEMFC.  相似文献   

10.
In recent years, ether-free polyaryl polymers prepared by superacid-catalyzed Friedel-Crafts polymerization have attracted great research interest in the development of anion exchange membranes(AEMs) due to their high alkali resistance and simple synthesis methods. However, the selection of monomers for high-performance polymer backbone and the relationship between polymer structure construction and properties need further investigated. Herein, a series of free-ether poly(aryl piperidinium) (PAP) with different polymer backbone steric construction were synthesized as stable anion exchange membranes. Meta-terphenyl, p-terphenyl and diphenyl-terphenyl copolymer were chosen as monomers to regulate the spatial arrangement of the polymer backbone, which tethered with stable piperidinium cation to improve the chemical stability. In addition, a multi-cation crosslinking strategy has been applied to improve ion conductivity and mechanical stability of AEMs, and further compared with the performance of uncrosslinked AEMs. The properties of the resulting AEMs were investigated and correlated with their polymer structure. In particular, m-terphenyl based AEMs exhibited better dimensional stability and the highest hydroxide conductivity of 144.2 mS/cm at 80 °C than other membranes, which can be attributed to their advantages of polymer backbone arrangement. Furthermore, the hydroxide conductivity of the prepared AEMs remains 80%–90% after treated by 2 M NaOH for 1600 h, exhibiting excellent alkaline stability. The single cell test of m-PTP-20Q4 exhibits a maximum power density of 239 mW/cm2 at 80 °C. Hence, the results may guide the selection of polymer monomers to improve performance and alkaline durability for anion exchange membranes.  相似文献   

11.
Novel cross-linked composite membranes were synthesized to investigate their applicability in anion exchange membrane fuel cells. These membranes consist of quaternized poly(vinyl alcohol) (QAPVA) and quaternized chitosan (2-hydroxypropyltrimethyl ammonium chloride chitosan, HACC) with glutaraldehyde as the cross-linking reagent. The membranes were characterized in term of their water content, ion exchange capacity (IEC), ion conductivity and methanol permeability. FTIR, X-ray diffraction and scanning electron microscopy (SEM) were also used to investigate the relation between the structure and performance of the composite membranes. The composite membranes have a high conductivity (10−3 to 10−2 S cm−1), and a low methanol permeability (from 5.68 × 10−7 to 4.42 × 10−6 cm2 s−1) at 30 °C. After reviewing all pertinent characteristics of the membranes, we find that the membrane structure is the principal factor affecting the conductivity and methanol permeability of these membranes.  相似文献   

12.
A series of fluorinated poly(aryl ether oxadiazole)s ionomers based on imidazolium salts (FPAEO-xMIM) were synthesized by quaternization of bromomethylated poly(aryl ether oxadiazole)s (FPAEO-xBrTM) with 1-methyl imidazole as aminating reagent. The anion exchange membranes (AEMs) were prepared by casting method and then immerged in aqueous sodium hydroxide for hydroxide ion exchanging. The structure of the obtained ionomers was characterized by 1H-NMR and FT-IR measurements. The physical and electrochemical properties of the membranes were also investigated. The hydroxide conductivity of FPAEO-xMIM membranes was higher than 10−2 S cm−1 at room temperature, while the water uptake and swelling ratio was moderate even at elevated temperature. TGA analysis revealed that the membranes based on imidazolium salts had good thermal stability.  相似文献   

13.
Anion exchange membrane (AEM) fuel cells have received significant attention due to their low fuel permeability and the use of non-platinum catalysts. However, the development of AEMs with robust chemical stability and high conductivity is still a great challenge. Herein, we prepare a new type of partially fluorinated backbone bearing pendent N-spirocyclic quaternary ammonium (QA) cations via a facile Williamson reaction, which displays great potential for fuel cells. The integration of the two substructures (a fluorinated moiety into a polymer backbone and a pendent cation structure) is beneficial for the fabrication of a well-defined micro-phase separation structure, thereby facilitating the construction of a highly-efficient ion transporting pathway. Correspondingly, the resulting AEM (PAENQA-1.0), despite its a relatively low ionic exchange capacity (0.93 meq g−1) demonstrates a conductivity of 63.1 mS cm−1 (80 °C). Meanwhile, the constrained ring conformation of N-spirocyclic QA results in improved stability of the AEMs.  相似文献   

14.
Alkaline fuel cells suggest solution for the problems of low methanol oxidation kinetics and methanol crossover, which are limiting the development of direct methanol fuel cells. In this work, a novel anion exchange membrane, quaternized poly(aryl ether oxadiazole), was prepared through polycondensation, grafting and quaternization. The ionic conductivity of as-synthesized anion exchange membrane can reach up to 2.79 × 10−2 S/cm at 70 °C. The physical and chemical stability of the anion exchange membranes could also meet the requirement for alkaline direct methanol fuel cells.  相似文献   

15.
Anion exchange membranes (AEMs) with higher ion exchange capacities (IECw) are limited to applications due to excessive swelling and higher water uptake. Crosslinked macromolecular structures have been a strategy to balance between ionic conductivity and swelling in membranes. However, highly crosslinked AEMs are usually mechanically brittle and poorer in ion transport. Thus we report a series of partially diamine crosslinked (X = 10%, 15%, 20%) comb-shaped AEMs functionalized with dimethylhexadecylammonium groups exhibiting improved flexibility, water uptake and swelling properties over conventional un-crosslinked or fully crosslinked materials. The higher conductivities in these PPO AEM(X) (for example, X = 20%, IECw = 1.96 mmol/g, σ(OH) ~ 67 mS/cm at 80 °C) are attributed to the distinct nanophase separation as observed in SAXS and AFM analyses. Finally, the microbial fuel cell performances of the membranes were compared with commercially available cation and anion exchange membranes.  相似文献   

16.
In the present study poly(2,2-(2,6-pyridin)-5,5-bibenzimidazole) was used for the preparation of novel MEAs for high-temperature polymer fuel cells (HT-PEMFCs). We prepared hybrid materials with two types of silica fillers in order to increase the MEA performances using this polymer. The membranes were characterized in terms of their microstructure and thermal stability. Cell operation tests and Electrochemical Impedance Spectroscopy were used for the characterization of the MEAs. A maximum power density of about 80 mW cm−2 was obtained at 300 mA cm−2 by using an imidazole-modified silica filler. The EIS technique showed that the fillers chiefly help to reduce the charge transfer resistance of the cathodic side. The gas transfer resistance may be neglected with respect to Rct, at least at low current densities.  相似文献   

17.
A series of sulfonated poly(fluorenyl ether nitrile oxynaphthalate) (SPFENO) copolymers with different degree of sulfonation (DS) are synthesized via nucleophilic polycondensation reactions with commercially available monomers. Incorporation of the naphthalanesulfonate group into the copolymers and their copolymer structures are confirmed by 1H NMR spectroscopy. Thermal stability, mechanical properties, water uptake, swelling behavior, proton conductivity and methanol permeability of the SPFENO membranes are investigated with respect to their structures. The electrochemical performance of a direct methanol fuel cell (DMFC) assembled with the SPFENO membrane was evaluated and compared to a DMFC with a Nafion 117 membrane. The DMFC assembled with the SPFENO membrane of proper DS exhibits better electrochemical performance compared to the Nafion 117-based cell.  相似文献   

18.
Novel imidazolium functionalized polysulfone (ImPS) membranes modified with zirconia (ZrO2) were synthesized through solution casting technique. Structural, morphological, thermal and mechanical analysis of the composite membranes confirmed adhesion and property enhancement caused by ZrO2. Water absorption investigations revealed better water absorption of the ImPS/ZrO2 membranes with intact morphology. Maximum ion exchange capacity and ionic conductivity for the composite membranes were obtained as 2.84 mmol/g and 80.2 mS/cm (50 °C) which was 21% and 47% higher as compared to pure ImPS membrane. Alkaline stability of the blend membranes was increased due to strong interaction between ZrO2 and ImPS molecules. Fuel cell performance using Pt/C catalysts exhibited OCP and power density elevation with incremental amounts of ZrO2 in the composite membrane composition. ImPS membrane with 10% ZrO2 recorded a highest OCP and power density of 1.04 V and 270 mW/cm2 which was 35% and 39% higher than the pure ImPS. Thus, the anion exchange membranes developed by ImPS/ZrO2 blending could be suiting well for alkaline fuel cells applications.  相似文献   

19.
A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and 1H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 °C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 × 104 S s cm−3, which indicates that it is a suitable candidate for applications in direct methanol fuel cells.  相似文献   

20.
Sulfonated poly(ether ether ketone)s with pendent amino groups (Am-SPEEKs) have been prepared for direct methanol fuel cells (DMFCs). With the goal of improving the dimensional stability and reducing the methanol permeability of membranes, Benzimidazole trimer is synthesized as a cross-linker. The cross-linking reaction is induced by heating at 120 °C for 6 h and then the effects of different contents of cross-linker on the properties of the cross-linking membranes are investigated in detail. Combining covalent cross-linking with ionic cross-linking, the cross-linking network structure causes significant enhancement in oxidative and mechanical property. Meanwhile, water uptake, swelling ratio and methanol permeability of the membranes substantially decrease with increasing the content of cross-linker. Although the conductivity of the membranes is lower than that of the pristine membrane, the relative selectivity is much higher. All the results indicate that the cross-linked membrane is potential candidate as membrane for applications in fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号