首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the previous studies on heat and mass transfer characteristics of hydride tank, whether the reaction heat of hydride bed can be removed quickly is a determinant factor of the reaction rate. As the core part of reaction system, the heat transfer optimization in the tank can significantly enhance the reaction rate. In this paper, the optimization of heat transfer fins for a finned multi-tubular metal hydride tank is presented, and the heat transfer equations of tank with various configuration fins (radius, thickness and number) are derived. By analyzing the effects of fin configurations on the heat transfer device, we found that the thermal resistance of reaction system reduces with the increase of the fin radius, thickness and number. In order to study transient reaction process inside the hydride tank with various configuration and operation conditions, a 3-D mathematical model is developed and validated based on the experimental data from literature. Through simulation and optimization on hydride tank with different configurations, we got that the fin number has the most significant positive effect on the absorption reaction process. The numerical simulation results show that the hydrogen absorption rate is proportional to hydrogen pressure, heat transfer coefficient and fluid flow velocity, and the hydrogen pressure has the most remarkable impact among these factors. The H2 absorption is accomplished in 1720 s at 1 MPa, and the absorption reaction is completed within 2000 s at the H2 pressure of 0.8 MPa. Moreover, the maximum difference in absorption completion time is only 190 s under different heat transfer coefficients and fluid flow velocities.  相似文献   

2.
Hydrogenation of metals is an exothermic and reversible process. Thus, metal hydride reactors/devices become essentially heat-driven. Excellent heat control in the MH reactor is required to develop metal hydride devices such as H2 storage systems successfully. Few attempts at nature-inspired designs have proven to have good heat transfer capabilities. Based on this idea, the present study investigates novel bio-inspired leaf-vein type fins for the metal hydride reactor. Two reactor designs are proposed for heat transfer fluid flow, namely (i) central straight tube and (ii) narrow trapezoidal channels with 10 kg of LaNi5 as a sample alloy. Compared to longitudinal finned single tube reactors (LFSTR), these designs provided better heat transmission and temperature uniformity. For LFSTR, Case-1, and Case-2, 90% storage capacity was reached in 210, 145, and 80 s. Different fin configurations, such as parallel, inclined fins, and fins of different thicknesses, are investigated further in the design with narrow trapezoidal channels. The inclined fin configuration shows better performance, and it is further optimized by varying the inclination angle from 3 to 9° and the fin number from 2 to 4. The optimized design with a 7° inclination angle and four fins required 57 s to attain 90% storage capacity and reduced absorption time by 73% compared to LFSTR. The influence of operating parameters such as hydrogen supply pressure, inlet temperature, and velocity of the heat transfer fluid on the performance is evaluated for the optimized design.  相似文献   

3.
Hydrogen absorption by ~5 kg LaNi5 in a metal hydride reactor is simulated. A cylindrical reactor (OD 88.9 mm, Sch- 40s, SS 316) with internal conical copper fins and cooling tubes (1/4, SS 316) carrying water at 1 m s−1 and 293 K (inlet) is considered. Designs with 10, 13 and 19 equi-spaced fins and 2, 4 and 6 cooling tubes are explored. Hydrogen (15 atm) is supplied through a coaxial metal filter (OD 12 mm, SS 316). Conical fins offer enhanced heat transfer through higher surface area and funnelling effect for efficient loading of metal hydride powder. 19 fins + 6 tubes design requires 290 and 375 s for 80% and 90% hydrogen saturation level, respectively. The fins near the water inlet regions are more effective as the water temperature is lower in these regions. Trade-off exists between times taken for saturation and the mass of metal hydride.  相似文献   

4.
The optimization of the hydrogen loading process in a multi-tubular sodium alanate hydride reactor equipped with longitudinal fins is investigated numerically. The effect of the number, thickness and tip clearance of the fins on the hydrogen charging rate is assessed, so that the fin optimal geometric properties are determined by the compromise between the hydrogen loading rate and the fin contribution to the weight and the volume of the storage system. Simulation results have shown that the hydrogen loading rate corresponding to this optimized configuration is 41% greater than the case without fins if we suppose a perfect interconnectivity between the fin tips and the internal walls of the hydride tubes. Otherwise, the amount of stored hydrogen decreases drastically. The loading of hydrogen under high charging pressures results in higher hydrogen loading rates and there is an interaction between the geometric and operating parameters leading to the optimized amount of stored hydrogen.  相似文献   

5.
Heat transfer in metal hydride bed significantly affects the performance of metal hydride reactors (MHRs). Enhancing heat transfer within the reaction bed improves the hydriding rate. This study presents performance analysis in terms of storage capacity and time of three different cylindrical MHR configurations using storage media LaNi5: a) reactor cooled with natural convection, b) reactor with a heat pipe on the central axis, c) reactor with finned heat pipe. This study shows the impact of using heat pipes and fins for enhancing heat transfer in MHRs at varying hydrogen supply pressures (2–15 bar). At any absorption temperature, hydrogen absorption rate and hydrogen storage capacity increase with the supply pressure. Results show that using a heat pipe improves hydrogen absorption rate. It was found that finned heat pipe has a significant effect on the hydrogen charge time, which reduced by approximately 75% at 10 bar hydrogen supply pressure.  相似文献   

6.
An optimal hydrogen storage reactor should have a higher chemical reaction rate by which the heat can be exchanged as fast as possible. The configuration of heat exchanger structure design plays a crucial role in improving heat and mass transfer effect in metal hydride beds. Consequently, a variety of different metal hydride bed configurations have been investigated in experimental and simulation works for the improvement of absorption/desorption rate. In this work, the development of metal hydride bed design in recent decades has been reviewed to help the readers summarize and optimize the reactor configuration. The summarization and review of metal hydrides design can be broadly classified into five distinct categories, which are: 1) design of cooling tubes, 2) design of fins, 3) increasing and arrangement of cooling tubes, 4) other geometric design, and 5) utilization of phase change material. This work is concentrated on assessing the heat and mass transfer effectiveness of various reactor structure configurations. The superiority and weakness of different configurations are summarized to give a comparison of the heat exchange effects. Moreover, the structural parameter analysis for each configuration is also reviewed from the heat and mass transfer aspect. Finally, some recommendations are provided for future metal hydride bed structural designs.  相似文献   

7.
A numerical study fully validated with solid experimental results is presented and analysed, regarding the hydrogenation process of rectangular metal hydride tanks for green building applications. Based on a previous study conducted by the authors, where the effective heat management of rectangular tanks by using plain embedded cooling tubes was analysed, in the current work the importance of using extended surfaces to enhance the thermal properties and the hydrogenation kinetics is analysed. The studied extended surfaces (fins) were of rectangular shape; and several combinations regarding the number of fins and the fin thickness were examined and analysed. The values for fin thickness were 2-3-5 and 8 mm and the number of fins studied were 10-14-18 and 20. To evaluate the effect of the heat management process, a modified version of a variable named as Non-Dimensional Conductance (NDC) is introduced and studied. A novel AB2-Laves phase intermetallic was considered as the metal hydride for the study. The results of the hydrogenation behaviour for the introduced parameters (fin number and thickness) showed that the rectangular tank equipped with the cooling tubes in combination with 14 fins of 5 mm fin thickness has the capability of storing hydrogen over 90% of its theoretical capacity in less than 30 min.  相似文献   

8.
A novel cylindrical metal hydride (MH) reactor with loop-type finned tube and jacket heat exchanger was proposed in this work. This MH reactor is expected to possess high performance due to the enhanced heat transfer, compact structure and good gas tightness. A three-dimensional multi-physical model for hydrogen absorption was presented to investigate the evolutions of temperature and concentration in the MH bed, as well as the mean reaction rate of hydrogen absorption process. The effects of different fin configurations on the performance of the proposed MH reactor were also examined. It was indicated that the evolution curve of the mean reaction rate for the whole hydrogen absorption process can be divided into two stages. The reaction rate in the first stage is mainly dependent on the initial conditions (i.e., temperature and gas pressure) of MH bed, whereas the second stage is mainly influenced by the heat dissipation from MH bed to cooling fluid. For the proposed MH reactor, the total charging time for reaching 90% hydrogen saturation can be decreased by 56.8% and 81.9% as compared with that for cylindrical MH reactor with finned double U-shape tube heat exchanger and cylindrical MH reactor with finned single-tube heat exchanger, respectively. Also, it was found that the interlaced layout design of inner and outer fins can improve the uniformity of the temperature distribution inside the MH bed as compared with the parallel layout configuration. Besides, it was showed that increasing the number of fins with keeping the total fin volume constant, the absorption performance of the reactor can be improved.  相似文献   

9.
A 10 kg alloy mass metal hydride reactor, with LaNi5 alloy was designed. Heat transfer enhacement in the reactor was achieved by including embedded cooling tubes and an external water jacket. Detailed parametric study has been carried to understand the performance of the system. The effect of both geometrical and operational parameters was studied in simulations. The optimized geometrical parameters were used for fabricating the reactor. Experimental studies were carried on the fabricated reactor. Absorption studies were carried out for different supply pressure and different cooling fluid temperatures. Storage capacity of 1.13 wt% was found in 1620 s at a supply pressure of 25 bar and with a flow rate of 20 LPM. Similarily, desorption studies were carried out for varying heat transfer fluid temperatures. Complete and fastest desorption was observed at 80 °C with the reaction completion time of 2700 s.  相似文献   

10.
The absorption and desorption performances of a solid state (metal hydride) hydrogen storage device with a finned tube heat exchanger are experimentally investigated. The heat exchanger design consists of two “U” shaped cooling tubes and perforated annular copper fins. Copper flakes are also inserted in between the fins to increase the overall effective thermal conductivity of the metal hydride bed. Experiments are performed on the storage device containing 1 kg of hydriding alloy LaNi5, at various hydrogen supply pressures. Water is used as the heat transfer fluid. The performance of the storage device is investigated for different operating parameters such as hydrogen supply pressure, cooling fluid temperature and heating fluid temperature. The shortest charging time found is 490 s for the absorption capacity of 1.2 wt% at a supply pressure of 15 bar and cooling fluid temperature and velocity of 288 K and 1 m/s respectively. The effect of copper flakes on absorption performance is also investigated and compared with a similar storage device without copper flakes.  相似文献   

11.
12.
The reaction between metal hydride (MH) and hydrogen gas generates substantial amount of heat. It must be removed rapidly to sustain the reaction in the metal hydride hydrogen storage reactor. Previous studies indicate that the performance of the reactor can be improved by inserting an efficient heat exchanger design inside the metal hydride bed. In the present study, a cylindrical shaped metal hydride system containing LaNi5, integrated with a finned tube heat exchanger assembly made of copper pin fins and tubes, is presented. A 3-D numerical model is formulated in COMSOL Multiphysics 4.4 to study the transient behavior of sorption process inside the reactor. Experimental data obtained from the literature is used to approve the legitimacy of the proposed model. Influence of various operating and geometric parameters on the total absorption time of the reactor has been investigated. It is found that hydrogen supply pressure is the most influencing factor to increase the absorption rate of hydrogen. Total absorption time of the reactor is found to be 636 s with maximum storage capacity of 1.4 wt% at the operating conditions of 15 bar H2 gas supply pressure, heat transfer fluid temperature of 298 K and flow rate of 6.75 l/min.  相似文献   

13.
This paper numerically and experimentally investigated the liquid cooling efficiency of heat sinks containing micro pin fins. Aluminum prototypes of heat sink with micro pin fin were fabricated to explore the flow and thermal performance. The main geometry parameters included the diameter of micro pin fin and porosity of fin array. The effects of the geometrical parameters and pressure drop on the heat transfer performance of the heat sink were studied. In the experiments, the heat flux from base of heat sink was set as 300 kW/m2. The pressure drop between the inlet and the outlet of heat sink was set < 3000 Pa. Numerical simulations with similar flow and thermal conditions were conducted to estimate the flow patterns, the effective thermal resistance. It was found that the effective thermal resistance would reach an optimum value for various pressure drops. It was also noted that the effective thermal resistance was not sensitive to porosity for sparsely packed pin fins.  相似文献   

14.
In the present work a two-dimensional transient model to study the heat and mass transfer characteristics of plate fin-and-elliptical tube type metal hydride reactors is presented. The relevant governing equations are solved numerically. The heat transfer coefficient and pressure drop on external fin side are estimated using available correlations. Effects of external fluid flow rate and temperature on the fin-and-tube metal hydride reactor are studied. Results show that the use of elliptical metal hydride tubes in place of the standard circular tubes give rise to compact systems in addition to considerably lower fan power consumption, with very little change in the average heat and hydrogen transfer rates. Even though the performance of the reactor depends very much on the fin-and-tube arrangement, for all the arrangements considered here, the reactors with elliptical tubes were found to perform better in terms of compactness, weight and fan power consumption. Considering the aspects of mean hydride bed thickness, tube wall thickness, tube mass, compactness, heat and hydrogen transfer rates and fan power consumption, elliptical tubes of 0.6 eccentricity appear to offer the best solution for the given application.  相似文献   

15.
A volumetric gas absorption (Sievert) apparatus has been developed to measure hydrogen absorption and desorption at pressures up to 700 bar and temperatures between 240 K and 320 K. The apparatus is designed to reduce uncertainty for high pressure measurements while maintaining proper temperature control in the sample. Pressure-composition isotherms (PCI) and kinetics measurements of a well-studied material, LaNi5 have been obtained for validation of the apparatus. Measurements of both absorption and desorption PCI curves as well as full absorption kinetics data have been obtained for TiCrMn to examine the performance at high pressures, as well as to examine the thermodynamic hysteresis effect in TiCrMn for applications in metal hydride system design. Due to this hysteresis, the thermodynamics of the absorption reaction differ significantly from those of the desorption reaction, which must be accounted for when considering thermal design of a metal hydride reactor and the suitability of the metal hydride for energy storage applications.  相似文献   

16.
Optimization of the fin layout in a metal hydride (MH) bed has been sought to enhance poor heat transmission in a hydrogen storage tank, and to obtain a maximum hydrogen absorption rate with a smaller volume of fins. Two different fin configurations, radial and circular fins, in a vertical cylindrical reactor vessel were tested with a La‐Ni‐based AB5 type hydrogen storage alloy. A two‐dimensional transient heat conduction analysis, coupled with predicted temperature and concentration of absorbed hydrogen in the bed for the exothermic hydride reaction, was used to evaluate enhancement of the hydrogen absorption time. The estimated temperature and concentration agreed within 6 K and 8.5%, respectively, with our experimental results. The effect of thickness and the spacing and shape of fins on the hydrogen absorption time were analytically evaluated, so that the optimum range of the each fin layout was obtained by the trade off between absorption time and reduction in the MH volume due to the volume occupied by fins. The hydrogen absorption time for the recommended layout of circular fins was reduced to approximately one‐third of that without fins. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(3): 165–183, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20195  相似文献   

17.
Pressure drop and heat transfer characteristics of air in three annular tubes with different internal longitudinal fins were investigated experimentally at uniform wall heat flux. The tested tubes have a double‐pipe structure with the inner blocked tube as an insertion. Three different kinds of fins, plain rectangle fin, plain rectangle fin with periodical ridges and wave‐like fin, were located peripherally in the annulus. The friction factor and Nusselt number can be corrected by a power‐law correction in the Reynolds number range tested. It was found that the tube with periodical ridges on the plain fin or with wave‐like fin could augment heat transfer; however, the pressure drop was increased simultaneously. In order to evaluate the comprehensive heat transfer characteristics of the tested tubes, two criteria for evaluating the comprehensive thermal performance of tested tubes were adopted. They are: 1) evaluating the comprehensive heat transfer performance under three conditions: identical mass flow, identical pumping power, and identical pressure drop; 2) the second law of thermodynamics, i.e., the entropy generation. According to the two different evaluating methods, it was found that the tube with wave‐like fins provided the most excellent comprehensive heat transfer performance among the three tubes, especially when it was used under higher Reynolds number conditions. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(1): 29–40, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20186  相似文献   

18.
This work performs the simulation of hydrogen desorption processes with Mg2Ni hydrogen storage alloy to investigate the canister designs. Reaction rates and equilibrium pressures of Mg2Ni alloy were calculated by fitting experimental data in literature using least squares regression. The obtained reaction kinetics was used to model the thermalfluid behavior of hydrogen desorption. Since the alloy powders will expand and shrink during the absorption and desorption cycle, the canisters considered are comprised of expansion volume atop the metal bed. In order to enhance the heat transfer performance of the canister, an air pipe is equipped at the canister centre line with/without internal fins. Detailed equations that describe the force convection of the heat exchange pipe and the natural convection at the reactor wall are carefully incorporated in the model. Simulation results show that the bare cylindrical canister can not complete the desorption process in 2.8 h, while the canister equipped with the concentric heat exchanger pipe and fins can complete desorption within 1.7 h.Results also demonstrate that the reaction rates can be further increased by increasing the pipe flow velocity and/or increasing the fin volume.  相似文献   

19.
This paper presents a comparative study of two cases of metal hydride hydrogen storage units working on (i) LaNi5 (ii) Compacts of LaNi5 incorporated with expanded natural graphite (ENG). It has been observed from the previous studies that the hydriding/dehydriding reactions eventually causes large strain changes, due to which the hydride forming metal alloys disintegrate and form a powder bed. Such reactor beds usually have a low thermal conductivity which minimizes the heat transfer phenomenon occurring during the absorption of hydrogen gas. Therefore, there is a need to implement heat augmentation methods to significantly enhance the thermal conductivity. The objective of this research is to present a 2-D numerical model using Finite Volume Method (FVM) and estimate the hydrogen storage performance of a cylindrical metal hydride bed for both the cases, i.e. powdered metal hydride bed and ENG compacts-based reactor bed at different values of inlet pressure and heat transfer fluid temperature. In this study, a detailed investigation on the absorption process reveals that reactor beds with compacted disks of LaNi5 and ENG demonstrate an enhanced effective thermal conductivity and efficient mass transfer. The simulation results show that a remarkable improvement in the heat transfer and hydrogen storage capacity with reduced absorption time can be achieved by using LaNi5 and ENG compacts. It was observed that the average reactor bed temperature dropped from 345.13 K to 337.37 K when the ENG based compacted disks was introduced into the reactor bed. Moreover, for supply pressure of 24 bar and fluid temperature of 293 K, the time taken to absorb hydrogen into the rector to achieve stabilized hydrogen storage capacity was estimated to be 446s and 232 s for the case of metal hydride and ENG compacts-based bed, respectively.  相似文献   

20.
《Applied Thermal Engineering》2007,27(14-15):2473-2482
The parallel-plain fin (PPF) array structure is widely applied in convective heat sinks in order to create extended surface for the enhancement of heat transfer. In the present study, for investigating the influences of designing parameters of PPF heat sink with an axial-flow cooling fan on the thermal performance, a systematic experimental design based on the response surface methodology (RSM) is used. The thermal resistance and pressure drop are adopted as the thermal performance characteristics. Various designing parameters, such as height and thickness of fin, width of passage between fins, and distance between the cooling fan and the tip of fins, are explored by experiment. Those parameters affect the structure arrangement, geometry of fins and the status of impinging jet from an axial-flow cooling fan installed over the heat sink. A standard RSM design called a central composite design is selected as experimental plan for the four parameters mentioned above. An effective procedure of response surface methodology (RSM) has been proposed for modeling and optimizing the thermal performance characteristics of PPF heat sink with the design constrains. The most significant influential factors for minimizing thermal resistance and pressure drop have been identified from the analysis of variance. The confirmation experimental results indicate that the proposed model is reasonably accurate and can be used for describing the thermal resistance and pressure drop with the limits of the factors studied. The optimum designing parameters of PPF heat sink with an axial-flow cooling fan under constrains of mass and space limitation, which are based on the quadratic model of RSM and the sequential approximation optimization method, are found to be fin height of 60 mm, fin thickness of 1.07 mm, passage width between fins of 3.32 mm, and distance between the cooling fan and the tip of fins of 2.03 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号