首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally accepted that carbon dioxide (CO2) is one of the most important greenhouse gases and a primary factor in the acceleration of climate change. Methanation, which involves converting CO2 to methane in the presence of renewable hydrogen, is a plausible technique for achieving net-zero atmospheric CO2 concentrations. Nevertheless, the development of effective catalytic systems continues to be a significant barrier tor CO2 methanation. CeO2-based catalysts for CO2 methanation could benefit from tuning their oxygen vacancies (OVs) to increase catalytic performance. This review examines and discusses in depth a number of different characterization methodologies for measuring OVs. Additionally, this review focuses specifically on the role that OVs play in various CeO2-based catalysts as well as the numerous tuning strategies that may be used to increase the number of OVs in these catalysts. This study could give scientists new ideas for how to improve catalytic CO2 methanation.  相似文献   

2.
The catalytic effects of CO preferential oxidation and methanation catalysts for deep CO removal under different operating conditions (temperature, space velocity, water content, etc.) are systematically studied from the aspects of CO content, CO selectivity, and hydrogen loss index. Results indicate that the 3 wt% Ru/Al2O3 preferential oxidation catalysts reduce CO content to below 10 ppm with a high hydrogen consumption of 11.6–15.7%. And methanation catalysts with 0.7 wt% Ru/Al2O3 also exhibit excellent CO removal performance at 220–240 °C without hydrogen loss. Besides, NiClx/CeO2 methanation catalysts possess the characteristics of high space velocity, high activity, and high water-gas resistance, and can maintain the CO content at close to 20 ppm. Based on these experimental results, the coupling scheme of combining NiClx/CeO2 methanation catalysts (low cost and high reaction space velocity) with 0.7 wt% Ru/Al2O3 methanation catalysts (high activity) to reduce CO content to below10 ppm is proposed.  相似文献   

3.
The Ni/ZrO2 catalyst is one of the most active systems for the methanation of CO to be employed in the hydrogen purification for PEMFC. This contribution aims to study the effect of ZrO2 on the methanation of CO and CO2. The catalytic behavior of Ni/ZrO2, Ni/SiO2, a physical mixture comprising Ni and ZrO2, and a double-bed reactor were evaluated. The TPD of CO and CO2, TPSR and the cyclohexane dehydrogenation reaction were carried out to describe the catalysts and the reactions. The high activity of Ni/ZrO2 catalyst toward the methanation of CO is related to the presence of active sites on the ZrO2 surface. The methanation of CO occurs on ZrO2 due to its ability to adsorb CO and also because of the hydrogen spillover phenomenon. Apparently, the effect of ZrO2 is less relevant for the methanation of CO2. Ni/ZrO2 is a very promising system for the purification of hydrogen.  相似文献   

4.
The Ni/ZrO2 catalyst doped with Ca and Ni/ZrO2 were employed in the CO2 methanation, a reaction which will possibly be used for storing intermittent energy in the future. The catalysts were characterized by X-ray photoelectron spectroscopy (XPS, reduction in situ), X-ray diffraction (XRD, reduction in situ and Rietveld refinement), electron paramagnetic resonance (EPR), temperature-programmed surface reaction, cyclohexane dehydrogenation model reaction, temperature-programmed desorption of CO2 and chemical analysis. The catalytic behavior of these catalysts in the CO2 methanation was analyzed employing a conventional catalytic test. Adding Ca to Ni/ZrO2, the metallic surface area did not change whereas the CO2 consumption rate almost tripled. The XRD, XPS and EPR analyses showed that Ca+2 but also some Ni2+ are on the ZrO2 surface lattice of the Ni/CaZrO2 catalyst. These cations form pairs which are composed of oxygen vacancies and coordinatively unsaturated sites (cus). By increasing the number of these pairs, the CO2 methanation rate increases. Moreover, the number of active sites of the CO2 methanation rate limiting step (CO and/or formate species decomposition, rls) is enhanced as well, showing that the rls occurs on the vacancies-cus sites pairs.  相似文献   

5.
Complete removal of CO by methanation in H2-rich gas stream was performed over different metal catalysts. Ni/ZrO2 and Ru/TiO2 were the most effective catalysts for complete removal of CO through the methanation. These catalysts can decrease a concentration of CO from 0.5% to 20ppm in the gases formed by the steam reforming of methane with a significantly low conversion of CO2 into methane. Catalytic activities of supported Ni and Ru strongly depended on the type of supports, i.e. ZrO2 for Ni and TiO2 for Ru are suitable supports for the methanation of CO. The effect of catalytic supports on methanation of CO could be explained by particles sizes of Ni and Ru metal. Catalytic activity of supported Ru catalysts for the complete removal of CO through methanation became higher as particle sizes of Ru metal became smaller, while Ni metal particles with relatively larger diameters were effective for the reaction.  相似文献   

6.
Catalytic CO2 methanation is a potential solution for conversion of CO2 into valuable products, and the catalyst plays a crucial role on the CO2 conversion and CH4 selectivity. However, some details involved in the CO2 methanation over the carbon supported Ni catalysts are not yet fully understood. In this work, commercial coal char (CC) supported Ni catalysts were designed and prepared by two different methods (impregnation-thermal treatment method and thermal treatment-impregnation method) for CO2 methanation. Effects of the preparation conditions (including the thermal treatment temperature and time, the mass ratio of CC:Ni and the preparation method), as well as the reaction temperature of CO2 methanation, were investigated on the catalyst morphology, reducibility, structure and catalytic performance. Fibrous Ni-CC catalyst is achieved and shows high CO2 conversion (72.9%–100%) and CH4 selectivity (>99.0%) during the 600-min methanation process. Adverse changes of the catalyst surface and textural properties, reducibility, particle size and morphology are the potential factors leading to the catalyst deactivation, and possible solutions resistant to the deactivation were analyzed and discussed. The CO2 methanation mechanism with the CO route was proposed based on the oxidation-reduction cycle of Ni in this work.  相似文献   

7.
CO selective methanation can remove the CO in H2-rich reformate gas to prevent the poisoning of Pt anode electrode in proton exchange membrane fuel cell. However, the methanation of CO2 in H2-rich gas consumes a lot of hydrogen, which greatly reduces the energy efficiency. In order to inhibit CO2 methanation, mesostructured Al2O3–ZrO2 was modified by different amounts of phosphate, and then was as Ni support. The structures and surface properties of Ni/Al2O3–ZrO2 catalyst modified by phosphate were studied to reveal the effect of phosphate-modification on CO conversion and selectivity for CO methanation. It was found that the phosphate-modification inhibited the adsorption of CO2, which increased the selective for CO methanation. But the modification with excess phosphate lessened active sites of Ni and weakened the adsorption of H2 and CO, which decreased the activity of CO methanation.  相似文献   

8.
Cobalt nanoparticles (10–50 nm) have been prepared by different procedures. Materials produced by reduction of cobalt chloride and nitrate by NaBH4 contain B impurities as borates or borides. They are very active in ethanol steam reforming at 673–773 K with up to 85% hydrogen yield at 773 K. B-free samples obtained by thermal decomposition of Co2(CO)8 is slightly less selective to hydrogen, due to its activity in ethanol cracking to methane which is probably poisoned by boron impurities on the other catalysts. B-containing samples are inactive in CO2 methanation and have weak activity in the reverse water gas shift (RWGS) reaction to CO. B-free nanoparticles have high activity in both CO2 methanation and RWGS. However, methanation activity is reduced fast by growth of encapsulating carbon species. These particles however also show quite stable activity in RWGS to CO, attributed to CoO impurities.  相似文献   

9.
CO methanation experiments showed that it was difficult to reach both goals of CO removal depth of below 10 ppm and CO2 conversion rate of below 5% by using a single catalyst in this paper. A two-stage methanation method by applying two kinds of catalysts is proposed, that is, one catalyst with relatively low activity and high selectivity for the first stage at higher temperatures, and another one with relatively high activity for the second stage at lower temperatures. CO can be removed from 1% to below 0.1% at the first stage and to below 10 ppm at the second stage with CO2 conversion rate below 1% and below 4% at each stage respectively. In addition, results also showed that the reverse water-gas shift (RWGS) reaction at the second stage was the dominant factor of CO removal depth. Temperature programmed reduction (TPR) and H2 chemisorption were applied to characterize the catalysts.  相似文献   

10.
In this study, a simple solid-state synthesis method was employed for the preparation of the Ni–Co–Al2O3 catalysts with various Co loadings, and the prepared catalysts were used in CO2 methanation reaction. The results demonstrated that the incorporation of cobalt in nickel-based catalysts enhanced the activity of the catalyst. The results showed that the 15 wt%Ni-12.5 wt%Co–Al2O3 sample with a specific surface area of 129.96 m2/g possessed the highest catalytic performance in CO2 methanation (76.2% CO2 conversion and 96.39% CH4 selectivity at 400 °C) and this catalyst presented high stability over 10 h time-on-stream. Also, CO methanation was investigated and the results showed a complete CO conversion at 300 °C.  相似文献   

11.
CO oxidation and methanation over Ru-TiO2 and Ru-ZrO2 catalysts were investigated for CO removal for applications in proton exchange membrane fuel cells. The catalysts were synthesised by the deposition precipitation method at a pH of 7–7.5 for better interactions between the support and the active Ru metal. Various characterization experiments such as TPR, XPS, FTIR-CO, CO chemisorption and HRTEM were conducted to better understand the physio-chemical properties of Ru on the supports. Both catalysts showed excellent activity for the total oxidation of CO, however, with the addition of H2, the catalysts activity to CO oxidation decreased significantly. Higher temperatures for the preferential oxidation reaction indicated that the Ru catalysts not only oxidize CO, but hydrogenate it as well. Furthermore, H2 oxidation was favoured over the catalysts. Hydrogenation of CO over these catalysts gave high CO conversion and selectivity towards CH4. Both the catalysts showed similar activity across the temperature range screened and gave maximum CO conversions of 99.9% from 240 °C onwards, with 99.9% selectivity towards CH4. The catalysts also showed good stability in the reaction and the similarities in the catalytic activity of these were attributed to the well-dispersed Ru metal over the supports. The Ru catalysts effectively reduced CO concentrations in the reformate gas to less than 10 ppm, as is required for practical applications.  相似文献   

12.
CO2 methanation has attracted considerable interests as a promising approach to productively utilizing CO2 and reducing emissions to realize a low-carbon society. One major difficulty with packed bed reactors for catalyzed CO2 methanation is maintaining an optimal reactor temperature distribution. Although a high temperature increases the catalytic activity, it also leads to the formation of an inlet hotspot, which causes thermal runaway, unfavorable equilibrium products, and catalyst degradation. To address this, in this study, we proposed an approach to manage the temperature profile in CO2 methanation reactors by increasing catalytic activity along the reactor length using different Ni composition catalysts (gradient-distributed Ni-YSZ catalyst). Ni-based tubular catalysts with different Ni compositions were prepared and stacked in order of ascending Ni content from the inlet to the outlet. The effect of gradient Ni compositions on the temperature profile was investigated based on both numerical simulations and experimental observations. The gradient-distributed Ni catalyst could successfully prevent hotspot formation at the inlet of the reactor compared to the highly active uniform catalysts. The use of the catalyst caused a small difference in the reactor temperature (of ~70 °C) and afforded a high CH4 yield (~90%). The proposed approach using gradient-distributed catalysts could be a potential method to manage CO2 methanation reactor temperature and to achieve high CO2 conversion in compact reactors.  相似文献   

13.
For the first time the influence of CO, CO2 and H2O content on the performance of chlorinated NiCeO2 catalyst in selective or preferential CO methanation was studied systematically. It was shown that the rate of CO methanation over Ni(Cl)/CeO2 increases with the increasing H2 concentration, is independent of CO2 concentration and decreases with increasing CO and H2O concentrations; the rate of CO2 methanation is weakly sensitive to H2 and CO2 concentrations and decreases with increasing CO and H2O concentrations. High catalyst selectivity was attributed to Ni surface blockage by strongly adsorbed CO molecules and ceria surface blockage by Cl, which both inhibit CO2 hydrogenation.For the first time, selective CO methanation over Ni(Cl)/CeO2 was studied for deep CO removal from formic acid derived hydrogen-rich gases characterized by high CO2 (40–50 vol%), low CO (30–1000 ppm) content and trace amounts of water. Composite Ni(Cl)/CeO2-η-Al2O3/FeCrAl wire mesh catalyst was demonstrated to be effective for this process at temperatures of 180–220°С, selectivity 30–70%, WHSV up to 200 L (STP)/(g∙h). The catalyst provides high process productivity, low pressure drop, uniform temperature distribution, and appears highly promising for the development of a compact CO cleanup reactor. Selective CO methanation was concluded to be a convenient way to CO-free hydrogen produced by formic acid decomposition.  相似文献   

14.
The CO2 methanation is an effective strategy for making full use of waste gases and converting them into valuable chemicals. Nowadays, the key challenge is the design of efficient catalysts to enhance low-temperature catalytic performance. A series of hydrotalcite-derived catalysts with tunable metal species were prepared by hydrothermal synthesis method for CO2 methanation at low-temperature. It was found that suitable synergistic effect between metallic Ni and basic sites in the support could be achieved by regulating the metal composition of hydrotalcite-derived catalysts. The NiMgAl catalyst exhibited the highest catalytic activity with CO2 conversion of 91.8% at 250 °C. The in situ DRIFTS measurements and DFT calculation further revealed that the alkaline metal oxide MgO and more Ni(111) active sites in the NiMgAl catalyst could promote the activation of CO2 and the formation of active intermediates, which actively participated in improving low-temperature activity. Therefore, the ternary mixed oxides catalyst derived from LDHs precursors shows a potential strategy in achieving excellent catalytic properties for CO2 methanation at low-temperature.  相似文献   

15.
Selective CO methanation from H2-rich stream has been regarded as a promising route for deep removal of low CO concentration and catalytic hydrogen purification processes. This work is focused on the development of more efficient catalysts applied in practical conditions. For this purpose, we prepared a series of catalysts based on Ru supported over titania and promoted with small amounts of Rh and Pt. Characterization details revealed that Rh and Pt modify the electronic properties of Ru. The results of catalytic activity showed that Pt has a negative effect since it promotes the reverse water gas shift reaction decreasing the selectivity of methanation but Rh increases remarkably the activity and selectivity of CO methanation. The obtained results suggest that RuRh-based catalyst could become important for the treatment of industrial-volume streams.  相似文献   

16.
Owing to increasing demands for clean energy, caused by global warming, renewable energy sources have attracted significant attention. However, these sources can affect the reliability of electrical grids owing to their intermittency. Power-to-gas technology is expected to help address this issue. In this study, the CO2 methanation process, which yields synthetic natural gas (SNG) via the synthesis of CO2 and H2 through proton exchange membrane (PEM) water electrolysis using surplus electricity generated from renewable energy, was evaluated and optimized based on techno-economic analyses. Requirements for the introduction of SNG produced through CO2 methanation in domestic natural gas markets are presented by considering various scenarios. Results indicate that, even if the electricity costs, including system marginal price and renewable energy costs, are minimal, the costs for PEM water electrolysis and CO2 methanation must be reduced by ~$550/kW and 25%, respectively, relative to current levels for the viable introduction of SNG in domestic markets.  相似文献   

17.
《能源学会志》2020,93(4):1581-1596
Additives affect the physiochemical properties of the catalyst as well as the evolution of the reaction intermediates produced during the reaction process such as the methanation of CO2. In this study, Co/Al2O3 catalysts modified with Na, K, Mg or Ca were prepared and the reaction intermediates formed during CO2 methanation were investigated. The results showed that Na, K or Mg species reacted with alumina, forming Al(OH)3 or MgAl2O4 spinel structure, leading to the re-structure of the catalysts and a remarkable decrease of the specific surface area. The increased alkalinity of the catalyst did not promote the catalytic activity for methanation but promoted CO formation. The addition of Na or K enhanced the affinity of the catalyst to the reaction intermediates of HCOO* and CO32−, slowing down their further reduction to CH4 and leading to the lower catalytic activity. The evolution of HCOO* and CO32− species strongly correlated with the catalytic activity, while the direct correlation between the capability for the absorbance of CO2* as well as the C–O functionality and the catalytic activity was not found. In addition, the addition of Na or K to Co/Al2O3 could also induce the formation of a significant amount of the coke species in the nanotube form.  相似文献   

18.
《能源学会志》2020,93(2):723-738
This study aimed to investigate impacts of Al2O3 and SiO2, the supports of Ni catalysts with distinct properties, and the additive of La on catalytic behaviors and reaction intermediates formed during methanation of CO2. The results showed that the addition of La to either Ni/Al2O3 or Ni/SiO2 led to the reduced size of metallic nickel, the reduced reduction degree of nickel oxide, the increased alkalinity number and the increased activity for methanation of CO2. Furthermore, the addition of La to the Ni/SiO2 catalyst could suppress the formation of CO via the reverse water gas shift (RWGS) reaction. Ni/SiO2 was much more active than the Ni/Al2O3, even though nickel size was much bigger. The in situ Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) studies showed that the addition of La to Ni/Al2O3 interfered with integration of hydroxyl group with *CO2 species and formation of the bicarbonate and carbonate, while favored formation of the formate specie, enhancing the catalytic activity. For Ni/SiO2, instead of formate, CO* became the main reaction intermediate. The strong absorption of CO* favored its further conversion and explained the low selectivity of the silica-based catalysts toward CO. The addition of La to Ni/SiO2 catalyst facilitated further hydrogenation of CO* species to CH4 and promoted the catalytic activity.  相似文献   

19.
This paper presents high-performance Ni-YSZ tubular catalysts for CO2 methanation prepared by the extrusion molding. We fabricated tubular-shaped Ni-YSZ catalysts with various Ni contents (25–100 wt% NiO) and investigated the effect of Ni content on CO2 methanation performance under various temperatures and gas flow rates. Catalysts with Ni contents >75 wt% showed CH4 yields >91% above 270 °C with high CH4 selectivities (>99%). High CH4 yields were also observed under high GHSVs at 300 °C: 93% and 92% at 8700 and 17,500 h−1, respectively. Investigation of methanation with the catalysts revealed that CO2 methanation was accelerated by a localized hotspot at the reactor inlet arising from the interaction between reaction kinetics and heat generation. Using a numerical simulation, we considered the optimum arrangement of catalytic activity in the reactor to avoid hotspot generation and realize a stable high CO2 methanation performance. We can simultaneously achieve high CH4 production and prevent hotspot formation by properly arranging catalysts with different activities.  相似文献   

20.
The wet H2-rich gas was used as reducing gas instead of the H2/N2 gas in the reduction step of the catalyst preparation. It is found that the selectivity for CO methanation over the catalysts 0.4Ni/ZrO2 so-obtained was decreased in comparison to the case of the H2/N2 gas used as reducing gas. Even though, the samples with the different feed atomic ratios of Ni/Zr prepared by the impregnation method and the co-precipitation method, respectively, were evaluated with the wet H2-rich gas both as reducing gas and as reactant gas. The catalysts Ni/ZrO2-CP prepared by the co-precipitation method exhibited a high catalytic activity for CO removal at a lowered reaction temperature with increasing the Ni loading. Over the catalyst 3.0Ni/ZrO2-CP, CO in the reactant gas could be removed to below 10 ppm at reaction temperatures of 220–260 °C with the selectivity higher than 50%. And the selectivity was kept at 100% during the 100 h test at 220 °C. The catalysts were characterized by XRD, XPS, XRF and the adsorption isotherm measurement. In addition, effect of water vapor in reactant gas was studied over the catalysts 0.4Ni/ZrO2 with the wet H2-rich gas and the dry H2-rich gas as reactant gas, respectively, in the case of the H2/N2 gas fixed as reducing gas. It is seen that presence of water vapor in the reactant gas retarded methanation reactions of CO and CO2 on the catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号