首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphic carbon nitride prepared by the thermal decomposition of urea was used a catalyst support for the in situ immobilization of Ru nanoparticles (NPs) (Ru/g-C3N4). The catalytic property of Ru/g-C3N4 was investigated in the hydrolysis of ammonia borane (AB) in an aqueous solution under mild conditions. Results show that the in situ generated Ru NPs are well dispersed on the surface of g-C3N4 with a mean particle size of 2.8 nm. The catalytic performance for AB hydrolysis indicates that 3.28 wt% Ru/g-C3N4 exhibits excellent catalytic activity with a high turnover frequency number of 313.0 mol H2 (mol Ru·min)−1 at room temperature. This strategy may provide an eco-friendly catalytic system for developing a sustainable catalytic route to hydrogen production.  相似文献   

2.
Developing efficient but facile strategies to modulate the catalytic activity of Ru deposited on metal oxides is of broad interest but remains challenging. Herein, we report the oxygen vacancies and morphological modulation of vacancy-rich Co3O4 stabilized Ru nanoparticles (NPs) (Ru/VO-Co3O4) to boost the catalytic activity and durability for hydrogen production from the hydrolysis of ammonia borane (AB). The well-defined and small-sized Ru NPs and VO-Co3O4 induced morphology transformation via in situ driving VO-Co3O4 to 2D nanosheets with abundant oxygen vacancies or Co2+ species considerably promote the catalytic activity and durability toward hydrogen evolution from AB hydrolysis. Specifically, the Ru/VO-Co3O4 pre-catalyst exhibits an excellent catalytic activity with a high turnover frequency of 2114 min?1 at 298 K. Meanwhile, the catalyst also shows a high durability toward AB hydrolysis with six successive cycles. This work establishes a facile but efficient strategy to construct high-performance catalysts for AB hydrolysis.  相似文献   

3.
In this work, poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium nanoparticles (NPs) supported on bamboo leaf-derived porous carbon (Ru/BC) has been synthesized via a one-step procedure. The structure and morphology of the as-synthesized samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM). As a catalyst for hydrogen generation from the hydrolysis of ammonia-borane (AB, NH3BH3) at room temperature, Ru/BC stabilized with 1 mg of PVP exhibited high activity (TOF = 718 molH2·molRu−1·min−1) and low activation energy (Ea = 22.8 kJ mol−1). In addition, the catalyst could be easily recovered and showed fairly good recyclability with 55.6% of the initial catalytic activity retained after ten experimental cycles, which confirmed that PVP could stabilize the Ru NPs and prevent their agglomeration on BC surface. Our results suggest that PVP-stabilized Ru/BC is a highly efficient catalyst for the hydrolysis of AB.  相似文献   

4.
Addressed herein is the in situ synthesis of a PAMAM dendrimer-encapsulated palladium(0) NPs (Pd(0)/Dnd) during the methanolysis of ammonia borane (AB) and the catalytic performance of the yielded Pd(0)/Dnd nanocatalysts in hydrogen production from the methanolysis of AB under ambient conditions. A two-step procedure that includes the impregnation of Pd(II) ions via their coordination to –NH2 groups of the dendrimer and then reduction of Pd(II) ions into the dendrimer-encapsulated Pd(0) NPs by AB during the methanolysis reaction was followed for the synthesis of Pd(0)/Dnd nanocatalysts. However, apart from the existing reports on the synthesis of dendrimer-encapsulated metal NPs, the present study includes for the first time the examination of effect of generation size (G4-G6), core type (ethylene diamine (E) or Jeffamine (P)) and terminal groups (-NH2, –COOH and –OH) of a PAMAM dendrimer on the stability, particle size, morphology and catalytic activity of metal NPs. After finding the optimum Pd(0)/Dnd catalysts considering all these effects, a detailed kinetic study comprising the effect of catalyst and AB concentrations as well as temperature was conducted by monitoring the hydrogen production from the methanolysis of AB. The best catalytic activity in the methanolysis of AB was obtained by using a PAMAM dendrimer with generation G6, amine terminal groups and Jeffamine core (P6.NH2) encapsulated Pd(0) NPs, providing the highest initial turnover frequency (TOF) of 55.8 mol H2.mol Pd−1.min−1 and apparent activation energy (Eaapp) of 48 ± 3 kJ.mol−1 at room temperature.  相似文献   

5.
In this paper, ruthenium supported on nitrogen-doped porous carbon (Ru/NPC) catalyst is synthesized by a simple method of in situ reduction using ammonia borane (AB) as reducing agent. The composition and structure of Ru/NPC catalyst are systematically characterized. This catalyst can efficiently catalyze the hydrolysis of AB. The hydrogen production reaction is completed within about 90 s at a temperature of 298 K and the maximum rate of hydrogen production is 3276 ml·s−1·g−1 with a reduced activation energy of 24.95 kJ·mol−1. The turnover frequency (TOF) for hydrogen production is about 813 molH2·molRu−1·min−1. Moreover, this catalyst can be recycled with a well-maintained performance. After five cycles, the maximum rate of hydrogen generation is maintained at 2206 ml·s−1·g−1, corresponding to 67.3% of the initial catalytic activity. Our results suggest that Ru/NPC prepared by in situ reduction is a highly efficient catalyst for hydrolytic dehydrogenation of AB.  相似文献   

6.
Ru nanoparticles supported on graphene have been synthesized via a one-step procedure using methylamine borane as reducing agent. Compared with NaBH4 and ammonia borane, the as-prepared Ru/graphene NPs reduced by methylamine borane exhibit superior catalytic activity towards the hydrolytic dehydrogenation of ammonia borane. Additionally, the Ru/graphene NPs exhibit higher catalytic activity than its graphene free counterparts, and retain 72% of their initial catalytic activity after 4 reaction cycles. A kinetic study shows that the catalytic hydrolysis of ammonia borane is first order with respect to Ru concentration, the turnover frequency is 100 mol H2 min−1 (mol Ru)−1. The activation energy for the hydrolysis of ammonia borane in the presence of Ru/graphene NPs has been measured to be 11.7 kJ/mol, which is the lowest value ever reported for the catalytic hydrolytic dehydrogenation of ammonia borane.  相似文献   

7.
TiO2–CdS nanotubes (NTs) were used for the first time as a support to load metal nanoparticles (NPs) for the hydrolysis of ammonia borane (AB) which is a new strategy. The TiO2–CdS NTs support was first synthesized using a hydrothermal method, and then the CuNi NPs were loaded using a liquid-phase reduction method. The synthesized samples were characterized by XRD, SEM-EDS, TEM, XPS, ICP, UV–Vis, and PL analyses. The characterization results show that the CuNi NPs existed in the form of an alloy with a size of ~1.2 nm and uniformly dispersed on the support. Compared with their single metal counterparts, the bimetallic CuNi-supported catalysts showed a higher catalytic activity in the hydrolysis of AB under visible-light irradiation: Cu0·45Ni0·55/TiO2–CdS catalyst had the fastest hydrogen evolution rate with a high conversion frequency (TOF) of 25.9 molH2·molcat−1 min−1 at 25 °C and low activation energy of 32.8 kJ mol−1. Cu0.45Ni0.55/TiO2–CdS catalyst showed good recycle performance, maintaining 99.3% and 85.6% of the original hydrogen evolution rate even after five and ten recycles, respectively. Strong absorption of visible light, improved electron–hole separation efficiency, and metal synergy between Cu and Ni elements played a crucial role in improving the catalytic hydrolysis performance of AB. The catalyst prepared in this study provides a new strategy for the application of photocatalysts.  相似文献   

8.
Catalytic systems based on nanospheres usually show satisfied catalytic activities due to their huge specific surface areas for active sites immobilization. However, their catalytic activities are usually restricted by the absence of active sites inside the nanospheres and the inadequate communications between the interior and exterior of the nanospheres. Therefore, it can be anticipated that great improvement will be achieved if a porous three-dimensional catalytic system can be designed, through which the activity sites can be distribute interior and exterior. Herein, polydopamine (PDA) NPs with uniform sizes of 300 nm are prepared. Then, the Ru nanoclusters (Ru NCs) are uniformly generated inside and on the surface of the PDA NPs to afford the bi-nanospheres (Ru-PDA NPs). After annealing, the porous carbonized Ru-PDA NPs (Ru-cPDA-750 NPs) with electroactive nitrogen atoms are finally obtained, exhibiting small overpotential (42 mV at the current density of 10 mA cm−2), low value of Tafel slope (35 mV decade−1) and robust stability for hydrogen evolution reaction (HER), which are comparable to that of Pt/C catalyst. Moreover, the study on the effect of Ru NCs amount on electrocatalytic ability reveals that Ru-cPDA NPs loaded with 0.08 wt% of Ru NCs exhibit the best HER catalytic performance compared with the Ru-cPDA NPs loaded with other amount of Ru NCs (0.04–0.16 wt%).  相似文献   

9.
Development of supported ligand-free ultrafine Rh nanocatalysts for efficient catalytic hydrogen evolution from ammonia borane (AB) is of importance but remains a tremendous challenge. Here, ultrafine and ligand-free Rh nanoparticles (NPs) (2.19 nm in diameter) were in-situ decorated on porous phosphorus-functionalized carbon (PPC) prepared by pyrolyzing hyper-cross-linked networks of triphenylphosphine and benzene. The resultant Rh/PPC showed excellent hydrogen production activity from AB hydrolysis (Turnover frequency: 806 min−1). Kinetic investigations indicated that AB hydrolysis using Rh/PPC exhibited first-order and zero-order reactions with Rh and AB concentrations, respectively. Activation energy (Ea) toward hydrogen generation from AB with Rh/PPC is as low as 22.7 kJ/mol. The Rh/PPC catalyst was recyclable and reusable for at least four times. The oxygen- and phosphorus-functional groups are beneficial for the affinity of Rh complex on the PPC surface, resulting in ultrafine and ligand-free Rh NPs with high dispersity and ability to supply abundant surface accessibility to catalytically active sites for AB hydrolysis. This study proposes a feasible approach for the synthesis of ultrafine and ligand-free metal NPs supported on heteroatom-doped carbon by using hyper-cross-linked networks.  相似文献   

10.
Hydrogen evolution from ammonia borane (AB) hydrolysis is of great importance considering the ever-increasing demand for green and sustainable energy. However, the development of a facile and efficient strategy to construct high-performance catalysts remains a grand challenge. Herein, we report an amino-group and space-confinement assisted strategy to fabricate Rh nanoparticles (NPs) using amino-functionalized metal-organic-frameworks (UiO-66-NH2) as a NP matrix (Rh/UiO-66-NH2). Owing to the coordination effect of amino-group and space-confinement of UiO-66-NH2, small and well-distributed Rh NPs with a diameter of 3.38 nm are successfully achieved, which can be served as efficient catalysts for AB hydrolysis at room temperature. The maximum turnover frequency of 876.7 min?1 is obtained by using the Rh/UiO-66-NH2 with an optimal Rh loading of 4.38 wt% and AB concentration of 0.2 M at 25 °C, outperforming most of the previously developed Rh-based catalysts. The catalyst is also stable in repetitive cycles for five times. The high performance of this catalyst must be ascribed to the structural properties of UiO-66-NH2, which enable the formation of small and well-dispersed Rh NPs with abundant accessible active sites. This study provides a simple and efficient method to significantly enhance the catalytic performance of Rh for AB hydrolysis.  相似文献   

11.
Non-noble Cu@FeCo core–shell nanoparticles (NPs) containing Cu cores and FeCo shells have been successfully in situ synthesized via a facile chemical reduction method. The NPs exerted composition-dependent activities towards the catalytic hydrolysis of ammonia borane (NH3BH3, AB). Among them, the Cu0.3@Fe0.1Co0.6 NPs showed the best catalytic activity, with which the max hydrogen generation rate of AB can reach to 6674.2 mL min−1 g−1 at 298 K. Kinetic studies demonstrated that the hydrolysis of AB catalysed by Cu0.3@Fe0.1Co0.6 NPs was the first order with respect to the catalyst concentration. The activation energy (Ea) was calculated to be 38.75 kJ mol−1. Furthermore, the TOF value (mol of H2. (mol of catalyst. min)−1) of Cu0.3@Fe0.1Co0.6 NPs was 10.5, which was one of the best catalysts in the previous reports. The enhanced catalytic activity was largely attributed to the preferable synergistic effect of Cu, Fe and Co in the special core–shell structured NPs.  相似文献   

12.
Ru@Ni core–shell nanoparticles (NPs) supported on graphene have been synthesized by one-step in situ co-reduction of aqueous solution of ruthenium (III) chloride, nickel (II) chloride, and graphene oxide (GO) with ammonia borane (AB) as the reducing agent under ambient condition. The as-synthesized NPs exhibit much higher catalytic activity for hydrolytic dehydrogenation of AB than the monometallic, bimetallic alloy (RuNi/graphene), and graphene-free core–shell (Ru@Ni) counterparts. Additionally, the Ru@Ni/graphene NPs facilitate the hydrolysis of AB, with the turnover frequency (TOF) value of 340 mol H2 min−1 (mol Ru)−1, which is among the highest value reported on Ru-based NPs so far, and even higher than the reversed Ni@Ru NPs. Furthermore, the as-prepared NPs exert satisfied durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB and methylamine borane (MeAB). Moreover, this simple synthetic method can be extended to other Ru-based bimetallic core–shell systems for more applications.  相似文献   

13.
Extremely low content of Ruthenium (Ru) nanoparticles were loaded on the carbon black (Ru/C) via reducing Ru ions with silicon monoxide. The obtained Ru/C nanocomposites exhibit an exciting electrochemical catalytic activity for hydrogen evolution reaction (HER) in the oxygen-free 0.5 M H2SO4 medium. The optical one (Ru/C-2) with a low Ru amount of 2.34% shows higher activity than previously reported Ru-based catalysts. The overpotential at 10 mA cm−2 is 114 mV and the Tafel slope is 67 mV·dec−1. Ru/C-2 catalyst also has good stability. The overpotential that afford the current density of 10 mA cm−2 of 20 wt% Pt/C increased 92 mV while that of Ru/C-2 only increased 50 mV after a 30,000 s chronopotentiometry test. Furthermore, the mass activity of Ru/C-2 catalyst is even better than that of the commercial 20 wt% Pt/C when the overpotential is larger than 0.18 V. This silicon monoxide-mediated strategy may open a new way for the fabrication of high performance electrocatalysts.  相似文献   

14.
Dehydrogenation of hydrogen-rich chemicals, such as ammonia borane (AB), is a promising way to produce hydrogen for mobile fuel cell power systems. However, the practical application has been impeded due to the high cost and scarcity of the catalysts. Herein, a low-cost and high-performing core-shell structured CuO–NiO/Co3O4 hybrid nanoplate catalytic material has been developed for the hydrolysis of AB. The obtained hybrid catalyst exhibits a high catalytic activity towards the hydrolysis of AB with a turnover frequency (TOF) of 79.1 molH2 mol cat−1 min−1. The apparent activation energy of AB hydrolysis on CuO–NiO/Co3O4 is calculated to be 23.7 kJ.mol−1. The synergistic effect between CuO–NiO and Co3O4 plays an important role in the improvement of the catalytic performance. The development of this high-performing and low-cost CuO–NiO/Co3O4 hybrid catalytic material can make practical applications of AB hydrolysis at large-scale possible.  相似文献   

15.
Effective catalysts for hydrogen generation from ammonia borane (AB) hydrolysis should be developed for the versatile applications of hydrogen. In this study, ruthenium nanoparticles (NPs) supported on alumina nanofibers (Ru/Al2O3-NFs) were synthesized by reducing the Ru(Ш) ions impregnated on Al2O3-NFs during AB hydrolysis. Results showed that the Ru NPs with an average size of 2.9 nm were uniformly dispersed on the Al2O3-NFs support. The as-synthesized Ru/Al2O3-NFs exhibited a high turnover frequency of 327 mol H2 (mol Ru min)?1 and an activation energy of 36.1 kJ mol?1 for AB hydrolysis at 25 °C. Kinetic studies showed that the AB hydrolysis catalyzed by Ru/Al2O3-NFs was a first-order reaction with regard to the Ru concentration and a zero-order reaction with respect to the AB concentration. The present work reveals that Ru/Al2O3-NFs show promise as a catalyst in developing a highly efficient hydrogen storage system for fuel cell applications.  相似文献   

16.
Cotton, which has abundant oxygen-containing hydrophilic groups, can adsorb a lot of water or other water soluble materials. In this paper, cotton was impregnated in CoCl2 aqueous solution. Co2+ can be uniformly adsorbed on cotton fibers. After been freeze-dried, the Co2+-adsorbed cotton was carbonized under an inert atmosphere and the Co nanoparticles (NPs) modified cotton derived carbon fibers (Co/CCF) were obtained. The Co/CCF was then dispersed in RuCl3 aqueous solution, so that Ru3+ can be reduced by metallic Co NPs through spontaneous replacement reaction and covered on Co NPs surface. Hence, the Ru@Co/CCF catalyst was prepared with low Ru loading in the view of Ru saving. In the catalytic hydrolysis of ammonia borane (NH3·BH3, AB), the Ru@Co/CCF catalyst showed excellent catalytic activity as compared with Ru/CCF and many other noble metal based catalysts. The superior activity of the catalyst is mainly due to the highly dispersed Ru@Co NPs on the carbon fibers and the uniform covering of the metallic Ru on the surface of Co NPs. Moreover, owing to the magnetic core of the Ru@Co NPs, Ru@Co/CCF catalyst can be easily separated from the reaction system using an external magnetic field. Thus, this work provided a useful strategy for facile preparation of low precious metals loading catalysts using cheap and environmental starting material as catalyst support precursor material.  相似文献   

17.
Well-dispersed palladium nanoparticles (NPs) anchored on a porous N-doped carbon is prepared by wet chemical method, using metal organic frameworks (ZIF-8) as a precursor to derive the porous N-doped carbon support. Benefitting from the N-doping and the porous structure of the carbon materials, the final Pd NPs are in high dispersion and exhibit reduced particle sizes, with electronic structure and chemical status tuned to favor the formic acid decomposition (FAD). The prepared Pd/CZIF-8-950 catalysts show enhanced catalytic performance and selectivity for FAD, the turnover of frequency (TOF) and the mass activity up to 1166 h−1 and 11.01 mol H2 g−1 pd h−1 were obtained at 30 °C. This work provides an effective and easy way for synthesis the Pd-based catalyst, which has enormous application prospects for the next generation hydrogen energy preparation and storage.  相似文献   

18.
Developing an efficient catalyst for hydrogen (H2) generation from hydrolysis of ammonia borane (AB) to significantly improve the activity for the hydrogen generation from AB is important for its practical application. Herein, we report a novel hybrid nanostructure composed of uniformly dispersed Co@Co2P core-shell nanoparticles (NPs) embedded in N-doped carbon nanotube polyhedron (Co@Co2P/N–CNP) through a carbonization-phosphidation strategy derived from ZIF-67. Benefiting from the electronic effect of P doping, high dispersibility and strong interfacial interaction between Co@Co2P and N-CNTs, the Co@Co2P/N–CNP catalyst exhibits excellent catalytic performance towards the hydrolysis of AB for hydrogen generation, affording a high TOF value of 18.4 mol H2 mol metal?1 min?1 at the first cycle. This work provides a promising lead for the design of efficient heterogeneous catalysts towards convenient H2 generation from hydrogen-rich substrates in the close future.  相似文献   

19.
Supported Rh nanoparticle (NP) catalysts have been widespread investigated for hydrogen production from ammonia borane (AB) hydrolysis. However, it is still challenging to develop an efficient strategy to improve the catalytic performances of supported Rh NP catalysts considering the high-cost and limited reserve of Rh. To overcome this limitation, we propose a facile but effective method to significantly improve the catalytic performance of Rh NPs by using oxidized-Ti3C2Tx (o-Ti3C2Tx) as a NP support. The systematic investigation results suggest that well distributed and ultrasmall Rh NPs with a diameter of 2.60 nm are successfully loaded on the o-Ti3C2Tx surface, which can be used as excellent catalysts for hydrogen release from AB hydrolysis. The corresponding turnover frequency (TOF) of 2021 min−1 and activation energy of 18.7 kJ/mol are achieved, which are superior to that of Rh NPs supported on a fresh Ti3C2Tx support and most of previous reported Rh NP catalysts. Additionally, the reusability test shows that Rh/o-Ti3C2Tx can maintain 53% of the initial catalytic activity after the fifth run. This study opens a new avenue to adjust the catalytic activity of metal NP catalysts for use in field of catalytic applications.  相似文献   

20.
Developing high-efficiency and low-cost catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) is significant and critical for the exploitation and utilization of hydrogen energy. Herein, the in-situ fabrication of well-dispersed and small bimetallic RuNi alloy nanoparticles (NPs) with tuned compositions and concomitant hydrolysis of AB are successfully achieved by using graphitic carbon nitride (g-C3N4) as a NP support without additional stabilizing ligands. The optimized Ru1Ni7.5/g-C3N4 catalyst exhibits an excellent catalytic activity with a high turnover frequency of 901 min?1 and an activation energy of 28.46 kJ mol?1 without any base additives, overtaking the activities of many previously reported catalysts for AB hydrolysis. The kinetic studies indicate that the AB hydrolysis over Ru1Ni7.5/g-C3N4 is first-order and zero-order reactions with respect to the catalyst and AB concentrations, respectively. Ru1Ni7.5/g-C3N4 has a good recyclability with 46% of the initial catalytic activity retained even after five runs. The high performance of Ru1Ni7.5/g-C3N4 should be assigned to the small-sized alloy NPs with abundant accessible active sites and the synergistic effect between the composition-tuned Ru–Ni bimetals. This work highlights a potentially powerful and simple strategy for preparing highly active bimetallic alloy catalysts for AB hydrolysis to generate hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号