首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 °C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core–shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/μm and a high current density of 1.0 mA/cm2 at 4.5 V/μm for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires.  相似文献   

2.
《Materials Letters》2005,59(14-15):1866-1870
Tetrapod-like zinc oxide (ZnO) nanoneedles were fabricated using a simple and economical method of rapid heating high purity zinc powders at 900 °C. No catalyst and vacuum were employed in the experiment. Field-emission measurements showed that the turn-on field of the synthesized tetrapod-like ZnO nanoneedles was as low as 1.8 V/μm at the emission current density of 1.0 μA/cm2 and the emission current density reached 1.0 mA/cm2 under an applied field of about 3.9 V/μm. The low turn-on field, high emission current density, and good electron emission stability make the ZnO nanoneedles one of the promising candidates for field-emission displays.  相似文献   

3.
The excellent vertically aligned cobalt nanowire arrays were electrodeposited into anodic aluminum oxide (AAO) templates. Each nanowire has the same length with 20 μm and the diameter with 60 nm. The field emission characteristics of the nanowires were firstly studied based on current-voltage measurements and the Fowler-Nordheim equation. The electron field emission measurements on the samples showed a turn-on field (1 mA/cm2) of 1.66 V/μm, a field enhancement factor of β = 3054 and a current density of 600 mA/cm2 at a relatively low voltage of 4.3 V/μm. The nanowire arrays could be an ideal alternative to carbon nanotubes and ZnO nanowires for the fabrication of flat panel displays.  相似文献   

4.
Field emission from zinc oxide nanostructures and its degradation   总被引:1,自引:0,他引:1  
Arrays of zinc oxide (ZnO) nanowires and nanobelts were synthesized by the thermal evaporation of mixed powders of ZnO and graphite. Neither catalyst nor vacuum environment was involved in the fabrication. For comparison, the ZnO nanowires were grown on a pre-deposited transitional ZnO film on a brass substrate and the ZnO nanobelts were grown directly on a Si substrate. Their field emission properties were systematically measured. Current density of 10 μA/cm2 was achieved at the fields of 5.7 and 6.2 V/μm from the nanowires and nanobelts, respectively. Also, the emission sites were found to distribute uniformly on the whole cathode. In the preliminary test on the stability, the ZnO nanobelts, which were sharp at the tip but wide at the root, exhibited better robustness than the ZnO nanowires. The post-test scanning electron microscopy (SEM) observation showed that the degradation of their field emission capability resulted from the breaking of the nanowires, which was tentatively attributed to the resistive heating during the field emission. In contrast, the shedding of the ZnO from the substrate was not so serious as imagined.  相似文献   

5.
Bunch-shaped ZnO nanowires film was successfully fabricated by the forced-hydrolysis-initiated-nucleation of anhydrous zinc acetate in an aqueous solution of zinc acetate and sodium hydroxide at low temperature. X-ray diffraction and a field emission scanning electron microscope clarified their formation mechanism and morphology development. The morphology was controllable by adjusting the solution temperature and deposition time. ZnO nanowires obtained at 65 degrees C for 6 h have a high aspect ratio of about 106. The smaller diameter with higher aspect ratio of ZnO nanowires, the easier the formation of bunch shapes by the capillary force during the drying process. This fabrication technique indicated that bunched ZnO film was prepared at low cost, and fittable to low heat-resistance substrates such as a polymer substarte.  相似文献   

6.
Zinc oxide (ZnO) nanowires with an average diameter of 15 nm were grown using a vapor phase transport process. Field emission was achieved from these nanowires in spite of their random orientation. The electric field for the extraction of a 10 μA/cm2 current density was measured to range from 4.4 to 5.0 V/μm, and that for a 1 mA/cm2 current density from 7.6 to 8.7 V/μm, depending on whether the sample was submitted to a heat treatment. The results exhibit the potential application of ZnO nanowires as field emitters in future flat panel displays.  相似文献   

7.
Vertical single-crystal ZnO nanowires with uniform diameter and uniform length were selectively grown on ZnO:Ga/glass templates at 600/spl deg/C by a self-catalyzed vapor-liquid-solid process without any metal catalyst. It was found that the ZnO nanowires are grown preferred oriented in the [002] direction with a small X-ray diffraction full-width half-maximum. Photoluminescence, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements also confirmed good crystal quality of our ZnO nanowires. Field emitters using these ZnO nanowires were also fabricated. It was found that threshold field of the fabricated field emitters was 14 V//spl mu/m. With an applied electric field of 24 V//spl mu/m, it was found that the emission current density was around 0.1 mA/cm/sup 2/.  相似文献   

8.
Qiuxiang Zhang  Ke Yu 《Vacuum》2007,82(1):30-34
ZnO nanowires with excellent photoluminescence (PL) and field-emission properties were synthesized by a two-step method, and the ZnO nanowires grew along (0 0 2) direction. PL measurements showed that the ZnO nanowires have stronger ultraviolet emission properties at 376 nm and there is 3 nm blue shift after the nanowires were immersed in thiourea (TU) solution compared with those of without immersion. The immersed-ZnO nanowires show a turn-on field of 2.3 V/μm at a current density of 0.1 μA/cm and emission current density up to 1 mA/cm2 at an applied field of 6.8 V/μm, which demonstrate that the immersed-ZnO nanowires posses efficient field-emission properties in contrast with those not immersed. The ZnO nanowires may be ideal candidates for making luminescent devices and field-emission displays.  相似文献   

9.
利用极其简单的方法,即将氯化锌溶液和氨水按一定配比混合进行水浴加热制备了ZnO纳米棒,其直径约为100nm.利用扫描电子显微镜和能谱仪对其结构和成分进行了分析.场发射测试结果表明,所制备的ZnO纳米棒有较低的开启场和阈值场,分别为2.7V/μm和4.95V/μm,其场增强因子为5390.这样高的场增强因子来源于氧化锌参差的层状结构.  相似文献   

10.
X.X. Yang  B.P. Wang  C. Li  K. Hou  Y.K. Cui  Y.S. Di 《Thin solid films》2009,517(15):4385-205
Flower-like zinc oxide (ZnO) nanostructures with hexagonal crown were synthesized on a Si substrate by direct thermal evaporation of zinc power at a low temperature of 600 °C and atmospheric pressure. Field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy and photoluminescence were applied to study the structural characteristics and optical properties of the product. The result indicated that the flower-like product with many slender branches and hexagonal crowns at the ends were single-crystalline wurtzite structures and were preferentially oriented in the <001> direction. The photoluminescence spectrum demonstrated a strong UV emission band at about 386 nm and a green emission band at 516 nm. The field emission of the product showed a turn-on field of 3.0 V/µm at a current density of 0.1 μA/cm2, while the emission current density reached about 1 mA/cm2 at an applied field of 5.9 V/μm.  相似文献   

11.
We have developed a novel, simple and cost effective wet chemical synthetic route for the production of ZnO nanoneedles and nanoflowers at low temperature. The synthesis process does not require any surfactant, template or pre-seeding. The synthesized ZnO nanoneedles have very sharp tips with their lengths in the range 2-3 μm, while for the case of nanoflowers, the nanoneedles were bunched together. X-ray diffraction study and X-ray photoelectron spectroscopic studies confirmed the formation of pure ZnO phase. Studies on the electron field emission property of the grown nanostructures showed that they are very efficient field emitter. The turn-on fields and the threshold fields are 3.6 V/μm, 4.4 V/μm and 5.4 V/μm, 6.8 V/μm for the ZnO nanoneedles and ZnO nanoflowers, respectively. The enhanced field emission property was attributed to the presence of sharp tips of the nanostructures.  相似文献   

12.
Kim YJ  Yoo J  Kwon BH  Hong YJ  Lee CH  Yi GC 《Nanotechnology》2008,19(31):315202
The electron emission of position-controlled grown ZnO nanoflowers was investigated for application in cold cathode electron emission devices. ZnO nanoflower arrays, composed of several nanoneedles with sharp tips, were grown selectively on a conducting glass substrate using a chemical solution deposition method. The morphology and position of the ZnO nanoflowers were controlled by preparing polymethylmethacrylate submicron patterns using electron-beam lithography. Without the patterns, in contrast, vertical ZnO nanoneedles were randomly grown on the substrates with high density. Several samples prepared at the same conditions exhibited almost the same nanoflower morphology and field emission characteristics. Comparison of the field emission characteristics of the ZnO nanoflower arrays and ZnO nanoneedles showed that the arrays had excellent electron emission characteristics, with a low turn-on electric field of 0.13?V?μm(-1) at 0.1?μA?cm(-2) and a high emission current density of 0.8?mA?cm(-2) in an applied electric field of 9.0?V?μm(-1). Furthermore, light-emitting devices made using ZnO nanoflower arrays demonstrated strong light emission, and micropixels for display application were clearly displayed.  相似文献   

13.
Flower-shaped zinc oxide (ZnO) structures have been synthesized in a microwave at 180 °C for 20 min using zinc nitrate and KOH. Detailed structural and morphology observation showed that the micron-sized ZnO nano-pencils grow out of the base of the flower-shaped ZnO structures. Photoluminescence spectrum measured at room temperature showed a sharp UV emission band around 390 nm which is attributed to the radiative annihilation of excitons. The synthesized PDMA and ZnO nanopencils are highly crystalline materials with one-dimensional morphology which improves the electron charge transport in the device. A distinctive photoluminescence quenching effect was observed indicating a photo-induced electron transfer. The solar cell devices fabricated from these materials demonstrated a short circuit current density of about 0.93 μA/cm2, open-circuit voltage 0.58 V, and efficiency of 0.16 %.  相似文献   

14.
Ceria and gadolinium (Gd) doped ceria nanowires have been synthesised by hydrothermal technique with mild reaction conditions. The structure and morphology of as-prepared nanowires were studied by X-ray diffraction and field emission scanning electron microscopy (FE-SEM) techniques. The FE-SEM analysis revealed the formation of nanowires with an average diameter of 10–15 nm. Atomic force microscopy (AFM) analysis for the annealed samples confirms the existence of well defined nanorods of 120–150 nm diameter and 1–1.3 μm length. Fluorescence and diffuse reflectance spectroscopy techniques have been used to study the optical properties of the prepared nanowires. The observed red shift in the ultraviolet–visible absorption spectra confirmed the promoted electron–phonon interaction in CeO2 and Gd:CeO2 nanowires compared to bulk structures. The prepared nanowires/rods were thermally stable at up to 350?°C, as revealed by thermogravimetric analysis. The electrical properties were studied by cyclic voltammetry (CV) and impedance spectroscopy. The CV results demonstrated that Gd:CeO2 exhibited a higher electro-oxidation than CeO2 nanowires.  相似文献   

15.
Metallic zinc film with various surface roughnesses was deposited on Si (100) substrates by ion beam sputter deposition utilizing beam energies at 8, 12 and 16 keV. The surface roughness of the metallic zinc film increased as ion beam energy increased and was found to act as a crucial factor for the formation of ZnO nanowires by subsequent thermal oxidation. ZnO nanowires with diameters of ∼30 nm and average length of ∼1 μm were obtained from 12 to 16 keV ion beam deposited samples while no ZnO nanowires were found on 8 keV ion beam deposited samples. Photoluminescence study of ZnO nanowires exhibits a strong UV emission at 377.2 nm (3.287 eV) with a full-width at half maximum of 95.0 meV and negligible defect related deep level emission. The ZnO nanowires are grown along the [110] direction and the growth mechanism is likely due to a solid state based-up diffusion process. Field-emission measurement shows a turn-on field of 7.9 MV/m and a field enhancement factor β of 691 is achieved.  相似文献   

16.
《Vacuum》2012,86(3):295-298
Metallic zinc film with various surface roughnesses was deposited on Si (100) substrates by ion beam sputter deposition utilizing beam energies at 8, 12 and 16 keV. The surface roughness of the metallic zinc film increased as ion beam energy increased and was found to act as a crucial factor for the formation of ZnO nanowires by subsequent thermal oxidation. ZnO nanowires with diameters of ∼30 nm and average length of ∼1 μm were obtained from 12 to 16 keV ion beam deposited samples while no ZnO nanowires were found on 8 keV ion beam deposited samples. Photoluminescence study of ZnO nanowires exhibits a strong UV emission at 377.2 nm (3.287 eV) with a full-width at half maximum of 95.0 meV and negligible defect related deep level emission. The ZnO nanowires are grown along the [110] direction and the growth mechanism is likely due to a solid state based-up diffusion process. Field-emission measurement shows a turn-on field of 7.9 MV/m and a field enhancement factor β of 691 is achieved.  相似文献   

17.
In this paper reports a facile hydrothermal synthesis, characterization and sensing application of zinc oxide (ZnO) nanostructures. ZnO nanostructures were synthesized by mixing triethylamine (TEA) with zinc nitrate at 60?°C followed by calcination at 650?°C for 6 h. The detailed characterizations conformed the synthesized ZnO nanostructures. Powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectral analysis confirmed the formation of hexagonal ZnO. Band gap of the ZnO nanoparticles was determined by UV–visible absorption spectroscopy. Morphology and size of the sample was examined by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). It shows that the sample has rod and hexagonal morphology. Elemental composition was determined by energy dispersive X-ray (EDX) spectroscopy. The ZnO was coated on glassy carbon electrode (ZnO/GCE) and it was utilized as an electrochemical sensor for 4-nitrophenol (4-Np). Sensitivity and detection limit of ZnO/GCE towards 4-Np was found to be 0.04 µA/mM and 2.09?×?10?5 M. The result suggests that ZnO has suitable sensor detection of 4-Np.  相似文献   

18.
ZnO nanowires were synthesized by a relatively simple process—oxidizing granular Zn films at a relatively low temperature (450–600 °C) without catalyst. The zinc film was initially fabricated by sputter deposition in an argon atmosphere at ambient temperature using Zn metal as the sputter target. After subsequent annealing in an air or oxygen atmosphere, ZnO nanowires were found to grow from individual Zn nanograins. The investigation has also showed that the nanowires preferably grow from relatively porous Zn film and a small amount of oxygen flow is beneficial to the growth of nanowires. The resultant single crystal ZnO nanowires obtained from annealing at 600 °C in an oxygen atmosphere had a mean diameter less than 50 nm and had a very good structural quality. This process provides an alternative method to produce ultra-fine ZnO nanowires standing on the substrate.  相似文献   

19.
Vertically grown planar ZnO nanowalls, with typical dimensions of 40-80?nm thickness and several micrometers wide, were electrodeposited on an indium-tin-oxide (ITO)-glass substrate at 70?°C. X-ray photoelectron spectroscopy (XPS) studies reveal that the nanowalls consist of ZnO covered with a Zn(OH)(2) overlayer. An x-ray diffraction (XRD) study shows that these nanowalls have the wurtzite structure and are highly crystalline. The corresponding Raman and photoluminescence spectra further indicate the presence of oxygen deficiency. These ZnO nanowalls exhibit excellent field emission performance, with not only a considerably lower turn-on field of 3.6?V?μm(-1) (at 0.1?μA?cm(-2)) but also a higher current density of 0.34?mA?cm(-2) at 6.6?V?μm(-1) than most ZnO nanowires and other one-dimensional nanostructures reported to date.  相似文献   

20.
The Co nanowire arrays were synthesized by electrodeposition in polycarbonate template (PC) with 4 μm thickness. Electron field emission properties of cobalt nanowires were studied for wires with different aspect ratios, R ranged between 10 and 60, while the diameter of wires was fixed about 50 nm. The field emission properties of the samples showed low turn on electric field (Eto) with values varying between 2.9 and 11.3 V/μm showing a minimum value for R = 20 (Eto < 3 V/μm). On the other hand, the enhancement factor shows a peak for nanowires length about 1 μm. Field emission data using the Fowler-Nordhiem theory showed nearly straight-line nature confirming cold field emission of electrons. The fabricated field emitter arrays of cobalt nanowires in the PC templates opens the possibility of fabricating flexible flat panel displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号