首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CO removal with preferential CO oxidation (PROX) over an industrial 0.5% Ru/Al2O3 catalyst from simulated reformates was examined and evaluated through considering its simultaneously involved oxidation and methanation reactions. It was found that the CO removal was fully due to the preferential oxidation of CO until 383 K. Over this temperature, the simultaneous CO methanation was started to make a contribution, which compensated for the decrease in the removal due to the decreased selectivity of PROX at higher temperatures. This consequently kept the effluent CO content as well as the overall selectivity estimated as the ratio of the removed CO amount over the sum of the consumed O2 and formed CH4 amounts from apparently increasing with raising reaction temperature from 383 to 443 K when the CO2 methanation was yet not fully started. At these temperatures the tested catalyst enabled the initial CO content of up to 1.0 vol.% to be removed to several tens of ppm at an overall selectivity of about 0.4 from simulated reformates containing 70 vol.% H2, 30 vol.% CO2 and with steam of up to 0.45 (volume) of dry gas. Varying space velocity in less than 9000 h−1 did not much change the stated overall selectivity. From the viewpoint of CO removal the article thus concluded that the methanation activity of the tested Ru/Al2O3 greatly extended its working temperatures for PROX, demonstrating actually a feasible way to formulate PROX catalysts that enable broad windows of suitable working temperatures.  相似文献   

2.
The effect of CeO2 loading amount of Ru/CeO2/Al2O3 on CO2 methanation activity and CH4 selectivity was studied. The CO2 reaction rate was increased by adding CeO2 to Ru/Al2O3, and the order of CO2 reaction rate at 250 °C is Ru/30%CeO2/Al2O3 > Ru/60%CeO2/Al2O3 > Ru/CeO2 > Ru/Al2O3. With a decrease in CeO2 loading of Ru/CeO2/Al2O3 from 98% to 30%, partial reduction of CeO2 surface was promoted and the specific surface area was enlarged. Furthermore, it was observed using FTIR technique that intermediates of CO2 methanation, such as formate and carbonate species, reacted with H2 faster over Ru/30%CeO2/Al2O3 and Ru/CeO2 than over Ru/Al2O3. These could result in the high CO2 reaction rate over CeO2-containing catalysts. As for the selectivity to CH4, Ru/30%CeO2/Al2O3 exhibited high CH4 selectivity compared with Ru/CeO2, due to prompt CO conversion into CH4 over Ru/30%CeO2/Al2O3.  相似文献   

3.
Thermocatalytic decomposition of methane is proposed to be an economical and green method to produce COx-free hydrogen and carbon nanomaterials. In this work, the catalytic performance of Ni–Mn–Ru/Al2O3 catalyst under different reaction parameters (such as, pre-reduction temperature, reaction temperature, space velocity, etc.) were investigated to obtain optimum reaction conditions. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction, inductively coupled plasma optical emission spectrometer and hydrogen temperature programmed reduction. For the 60 wt% Ni-5 wt% Mn-10 wt% Ru/Al2O3 catalyst using Ru(NO)(NO3)x(OH)y(x + y = 3) as Ru precursor, the methane conversion rate obtained is high as 93.76% under optimum reaction conditions (reduction at 700 °C for 1 h, reaction at 750 °C, GSHV = 36,000 mL/gcat h). Carbon nanomaterials formed during the process of methane thermocatalytic decomposition were characterized by scanning electron microscopy, thermal gravimetric analyzer and Raman spectroscopy. Carbon nanofibers were formed over all the Ni–Mn–Ru/Al2O3 catalysts.  相似文献   

4.
A two-stage hydrogen purification process based on pressure swing adsorption (PSA) and CO selective methanation (CO-SMET) is proposed to meet the stringent requirements of H2-rich fuel for kW-scale skid-mounted or distributed proton exchange membrane fuel cell systems. The reforming gas is purified using dynamic adsorption model of PSA with activated carbon for initial purification and then kinetic model of CO-SMET with 50 wt% Ni/Al2O3 for CO deep removal. Sensitive analyses of the gas hourly space velocity, adsorption time and adsorption pressure etc. are studied. The results show that excellent H2 purity and CO concentration below 1000 ppm for the initial target using the three-bed and four-bed PSA system at shorter adsorption time and higher pressure, and then CO concentration below 10 ppm with H2 purity over 99.94% on CO-SMET. This work provides a small-scale and hydrogen-saving process for hydrogen purification can be achieved by the two-stage process.  相似文献   

5.
In order to investigate the effect of transition metal addition to platinum with different support materials on preferential CO oxidation, structure and chemical properties of supported bimetallic catalysts prepared by electron beam irradiation method were correlated to the catalytic performance. On Al2O3, decoration of Pt by small amount of Co (Co/Pt ∼ 0.03) drastically increased CO and O2 conversions while addition of equimolar Cu to Pt increased them only above 100 °C, where the rate-controlling factor was suggested to change from oxygen transport to CO activation. On CeO2, either addition of Co or Cu to Pt had minor or negative effect on high O2 conversion inherent to high oxygen transport at Pt–CeO2 interface. On Pt–Cu/CeO2, however, metal-CuOx interface dominates the reaction characteristics to give improved selectivity, which is suitable for deep CO removal in excess O2/CO condition. The order of selectivity above 100 °C, Pt–CoOx > Pt(alloy)–CuOx > Pt–CeO2 interfaces, was derived from structural analysis and catalytic tests.  相似文献   

6.
For the first time the influence of CO, CO2 and H2O content on the performance of chlorinated NiCeO2 catalyst in selective or preferential CO methanation was studied systematically. It was shown that the rate of CO methanation over Ni(Cl)/CeO2 increases with the increasing H2 concentration, is independent of CO2 concentration and decreases with increasing CO and H2O concentrations; the rate of CO2 methanation is weakly sensitive to H2 and CO2 concentrations and decreases with increasing CO and H2O concentrations. High catalyst selectivity was attributed to Ni surface blockage by strongly adsorbed CO molecules and ceria surface blockage by Cl, which both inhibit CO2 hydrogenation.For the first time, selective CO methanation over Ni(Cl)/CeO2 was studied for deep CO removal from formic acid derived hydrogen-rich gases characterized by high CO2 (40–50 vol%), low CO (30–1000 ppm) content and trace amounts of water. Composite Ni(Cl)/CeO2-η-Al2O3/FeCrAl wire mesh catalyst was demonstrated to be effective for this process at temperatures of 180–220°С, selectivity 30–70%, WHSV up to 200 L (STP)/(g∙h). The catalyst provides high process productivity, low pressure drop, uniform temperature distribution, and appears highly promising for the development of a compact CO cleanup reactor. Selective CO methanation was concluded to be a convenient way to CO-free hydrogen produced by formic acid decomposition.  相似文献   

7.
It is well known that CO depletion from the hydrogen is compulsory in order to avoid the poisoning of the anode electrocatalyst of the PEM fuel cell. Hydrogen generated by ethanol reforming contains CO and acetaldehyde. The latter can be decomposed on the electrocatalyst generating more CO. The decarbonylation and methanation reactions are proposed by this work in order to eliminate acetaldehyde and CO from the hydrogen stream. Our results show that Ru/Al2O3 is more active than Ni/SiO2 for the methanation reaction. These catalysts also promote the decarbonylation of acetaldehyde generating methane and CO, with Ni/SiO2 being much more active than the Ru catalyst. The performance of a double-bed reactor in the purification of hydrogen generated by ethanol reforming is described in this contribution. The first layer composed of Ni/SiO2 decomposes acetaldehyde producing methane and CO, which is then eliminated by the methanation reaction employing Ru/Al2O3 in the second layer.  相似文献   

8.
This study presents a designed and tested integrated miniature tubular quartz-made reactor for hydrogen (H2) production. This reactor is composed of two concentric tubes with an overall length of 60 mm and a diameter of 17 mm. The inner tube was designed as the combustor using Pt/Al2O3 as the catalyst. The gap between the inner and outer tubes is divided into three sections: a liquid methanol-water vaporizer, a methanol-steam reformer using RP-60 as the catalyst and a carbon monoxide (CO) methanator using Ru/Al2O3 as the catalyst. The experimental measurements indicated that this integrated reactor works properly as designed. The methanol conversion, hydrogen production rate and CO concentration were found to increase with an increasing methanol/air flow rate in the combustor and decreases with an increasing methanol/water feed rate to the reformer. The methanator experimental results indicated that the CO conversion and H2 consumption can be enhanced by increasing the Ru loading. It was also found that the CO methanation depends greatly on the reaction temperature. With a higher reaction temperature, the CO methanation, carbon dioxide (CO2) methanation, and reversed water gas shift reactions took place simultaneously. CO conversion was found to decrease while H2 consumption was found to increase. At a lower reaction temperature both the CO conversion and H2 consumption were found to increase indicating that only CO methanation took place. From the experimental results the maximum methanol conversion, hydrogen yield, and CO conversion achieved were 97%, 2.38, and 70%, respectively. The actual lowest CO concentration and maximum power density based on the reactor volume were 90 ppm and 0.8 kW/L, respectively.  相似文献   

9.
The effects of Co on RuO2/Al2O3's activities for water gas shift (WGS) and methanation were studied. Catalysts were characterized with BET, XRD, SEM/EDS, H2-TPR and CO-TPR. The effects of various parameters, such as calcination temperature, Ru–Co loading, Ru/Co ratio, inlet CO concentration and H2O/CO ratio on the activities of catalysts were investigated. There existed CoI (strongly interact with RuO2) and CoII (weakly interact with RuO2). For Co/RuO2/Al2O3 (Ru/Co = 1, AT = 350), only CoI existed as bimetallic Co–Ru nanoparticles. This unique structure led this catalyst to achieve the highest CO conversion of 98.6% exceeding WGS's theoretical thermodynamic equilibrium limit due to the co-occurrence of methanation. Co/RuO2/Al2O3 was more favorable to catalyze CO methanation than CO2 methanation. The apparent activation energies of forward and reverse WGS catalyzed by Co/RuO2/Al2O3 were 37.8 and 74.6 kJ mol−1, respectively. The difference was corresponding well to the enthalpy change (−41.1 kJ mol−1) of WGS.  相似文献   

10.
The complex mixture of gasified tar model (phenol, toluene, naphthalene, and pyrene) was steam reformed for hydrogen production over 10 wt% nickel based catalysts. The catalysts were prepared by co-impregnation method with dolomite promoter and various oxide supports (Al2O3, La2O3, CeO2, and ZrO2). Steam reforming was carried out at 700 °C at atmospheric pressure with steam to carbon molar ratio of 1 and gas hourly space velocity of 20 L/h·gcat. The catalysts were characterised for reducibility, basicity, crystalline, and total surface area properties. Dolomite promoter strengthened the metal-support interaction and basicity of catalyst. The Ni/dolomite/La2O3 (NiDLa) catalyst with mesoporous structure (26.42mn), high reducibility (104.42%), and strong basicity (5.56 mmol/g) showed superior catalytic performance in terms of carbon conversion to gas (77.7%), H2 yield (66.2%) and H2/CO molar ratio (1.6). In addition, the lowest amount of filamentous coke was deposited on the spent NiDLa after 5 h.  相似文献   

11.
The water–gas shift reaction (WGSR) performance was experimentally studied using Pt-based catalysts for temperature, time factor and steam to carbon (S/C) molar ratio at ranges of 750–850 °C, 10–20 gcat h/molCO, and 1–5, respectively. Al2O3 spheres were used as the catalyst support. For the high S/C cases, it was found that CO conversion can be enhanced when Pt/CeO2/Al2O3 catalyst was used as compared with Pt/Al2O3. For the low S/C ratio cases, CO conversion enhancement was not significant with the addition of CeO2. It was also found that CO conversion was not influenced by the CeO2 amount to a large extent. Using bimetallic Pt–Ni/CeO2/Al2O3 catalyst, it was found that higher CO conversion can be obtained as compared with CO conversions obtained from monometallic catalysts (Pt/Al2O3 or Pt/CeO2/Al2O3). The experimental data also indicated that good thermal stability can be obtained for the Pt-based catalysts studied.  相似文献   

12.
The pre-reforming of commercial liquefied petroleum gas (LPG) was investigated over Ni–CeO2 catalysts at low steam to carbon (S/C) molar ratios less than 1.0. It was found that the catalytic activity and selectivity depended strongly on the nature of the support and the interaction between Ni and CeO2. The Ni–CeO2/Al2O3 catalysts, which were prepared by impregnating boehmite (AlOOH) with an aqueous solution of cerium and nickel nitrates, exhibited the optimal catalytic activity and remarkable stability for the steam reforming of LPG in the temperature range of 275–375 °C. The effects of CeO2 loading, reaction temperature and S/C ratio on the catalytic behavior of the Ni–CeO2/Al2O3 catalysts were discussed in detail. The results showed that the catalysts with 10 wt.% CeO2 had the highest catalytic activity, and higher S/C ratios contributed to LPG reforming and the methanation of carbon oxides and hydrogen. The XRD and H2-TPR analyses revealed that the strong interaction between Ni and CeO2 resulted in the formation of CeAlO3 in the Ni–CeO2/Al2O3 catalysts reduced. The stability tests of 15Ni–10CeO2/Al2O3 catalyst at 350 °C indicated that the catalyst was stable, and the stability could be enhanced by increasing S/C ratio.  相似文献   

13.
《能源学会志》2014,87(3):246-252
The syngas from biomass gasification may contain trace oxygen besides of gaseous hydrocarbons, which will result in the temporarily or even permanently deactivation of Fischer–Tropsch (F–T) catalysts. In this paper, CuO–CeO2/Al2O3 catalyst was developed to efficiently remove the trace oxygen from biomass syngas. The experimental results demonstrated that CuO–CeO2/Al2O3 catalyst was considerably effective in removing oxygen to the level of below 1 ppm, its lifetime and deoxygenation capacity were 160 h and 3000 ml/g, respectively. Moreover, the optimum conditions of CuO–CeO2/Al2O3 catalyst were 200 °C, 3.45 × 105 Pa, and 3000 h−1 gas hourly space velocity.  相似文献   

14.
Decline in catalyst performance due to coke deposition is the main problem in diesel steam (SR) and autothermal reforming (ATR) reactions. Good redox potential and strong interaction of CeO2 with nickel increase activity and coke resistivity of Ni/Al2O3 catalysts. In this study, mesoporous Al2O3, CeO2/Al2O3, and CeO2/ZrO2/Al2O3 supported nickel catalysts were successfully synthesized. The highest hydrogen yield, 97.7%, and almost no coke deposition were observed with CeO2/ZrO2/Al2O3 catalyst (Ni@8CeO2-2ZrO2-Al2O3-EISA) in SR reaction. The second highest hydrogen yield, 91.4%, was obtained with CeO2/Al2O3 catalyst (Ni@10CeO2-Al2O3-EISA) with 0.3 wt% coke deposition. Presence of ZrO2 prevented the transformation of cubic CeO2 into CeAlO3, which enhanced water gas shift reaction (WGSR) activity. Ni@10CeO2-Al2O3-EISA did not show any decline in activity in a long-term performance test. Higher CeO2 incorporation (20 wt%) caused lower steam reforming activity. Change of synthesis route from one-pot to impregnation for the CeO2 incorporation decreased the number of acid sites, limiting cracking reactions and causing a significant drop in hydrogen production.  相似文献   

15.
An experimental investigation is performed into the cleanup of CO in hydrogen for proton exchange membrane fuel cell (PEMFC) using Pt/Al2O3 and Ru/Al2O3 catalysts. Additionally, the effects of adding the transition metals Co and Fe to a Ru/Al2O3 catalyst are examined. The results show that as the level of Pt addition is increased, the maximum CO conversion rate is achieved at a lower temperature. With Ru/Al2O3 catalysts, the CO conversion rate increases significantly with increasing Ru addition at temperatures lower than 80 °C For both catalysts, the methane yield increases with increasing temperature and increasing noble metal addition. At temperatures in the range of 100–140 °C, the CO conversion rate and methane yield of the Pt- and Ru-based preferential oxidation (PROX) reactions are both insensitive to the density of the honeycomb carrier. The CO conversion rate is significantly improved by the addition of Fe at temperatures lower than 160 °C and by the addition of Co at temperatures higher than 200 °C. Of the two metals, Fe results in a greater reduction of the methane yield at high temperatures. Finally, both catalysts achieve a stable cleanup performance over the course of a 12-h stability test and suppress the CO concentration to an acceptable level for PEMFC applications.  相似文献   

16.
Present study evaluated the catalytic steam gasification of furniture waste to enhance the biohydrogen production. To do this, 10 wt% nickel loaded catalysts on the variety of supports (Al2O3, CeO2, CeO2-La2O3, and CeO2–ZrO2) were prepared by the novel solvent deficient method. The hydrogen selectivity (vol%) order of the catalysts was achieved as Ni/CeO2–ZrO2>Ni/CeO2>Ni/Al2O3?Ni/CeO2-La2O3. The best catalytic activity of Ni/CeO2–ZrO2 catalyst (~82 vol % H2 at 800 °C) was ascribed to the smaller size of nickel crystals, finely dispersed Ni on the catalyst surface, and Ce1-xZrxO2-δ solid solution. The role of Ce1-xZrxO2-δ solid solution in Ni/CeO2–ZrO2 catalyst was observed as bi-functional; acceleration of water-gas-shift and oxidation of carbon reaction. The high resistance of Ni/CeO2–ZrO2 towards the coke formation showed its potential to establish a cost-effective commercial-scale biomass steam gasification process. This study is expected to provide a promising solution for the disposal of furniture wastes for production of clean energy (biohydrogen).  相似文献   

17.
In this study, a simple solid-state synthesis method was employed for the preparation of the Ni–Co–Al2O3 catalysts with various Co loadings, and the prepared catalysts were used in CO2 methanation reaction. The results demonstrated that the incorporation of cobalt in nickel-based catalysts enhanced the activity of the catalyst. The results showed that the 15 wt%Ni-12.5 wt%Co–Al2O3 sample with a specific surface area of 129.96 m2/g possessed the highest catalytic performance in CO2 methanation (76.2% CO2 conversion and 96.39% CH4 selectivity at 400 °C) and this catalyst presented high stability over 10 h time-on-stream. Also, CO methanation was investigated and the results showed a complete CO conversion at 300 °C.  相似文献   

18.
A novel cyclic molecular designed dispersion (CMDD) method was employed to uniformly deposit 0.0–6.5 wt% Fe on CeO2. The gold catalysts (0.0–3.8 wt%) supported on Fe2O3-CeO2 were tested for CO preferential oxidation (PROX). As the CMDD method involved grafting of Fe (acac)3 onto the surface –OH groups, 2.7 surface –OH/nm2 was determined for the CeO2 by using the Grignard reagent. The performance of CMDD catalysts was compared with the corresponding catalysts prepared by impregnation. The catalysts were characterized by XPS, XRD, TPR, HRTEM-EDX, BET and ICP. The results suggested that Au/Fe2O3-CeO2 was significantly more active and selective than Au/CeO2. The CMDD-prepared catalysts with 1.4–2.5 wt% iron showed the highest activity and selectivity, especially at temperatures as low as 323 K. The formation of Ce-Fe solid solution for CMDD catalysts promoted the dispersion of both iron and gold. Highly dispersed gold nanoparticles mainly as small as 2.2 nm were observed in HRTEM.  相似文献   

19.
Gold (Au) supported on CeO2–Fe2O3 catalysts prepared by the deposition-coprecipitation technique were investigated for steam reforming of methanol (SRM). The 3 wt% Au/CeO2–Fe2O3 sample calcined at 400 °C achieved 100% methanol conversion and 74% hydrogen yield due to a strong Ce–Fe interaction in the active solid solution phase, CexFe1−xO2. The sintering of Au particles was observed when the highest metal content of 5 wt% was registered, which worsened the SRM activity. According to the TPR and TPO analysis, it was found that the transformation of the α-Fe2O3 structure in the mixed oxides and the coke deposition were the main factors for the rapid deactivation of the catalyst.  相似文献   

20.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号