首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work explores the production of biohydrogen from brewery wastewater using as inoculum a culture produced by natural fermentation of synthetic wastewater and Klebsiella pneumoniae isolated from the environment. Klebsiella pneumoniae showed good performance as inoculum, as evaluated using assays of between 9 and 16 cycles, with durations of 12 and 24 h, carbohydrate concentrations from 2.79 to 7.22 g L−1, and applied volumetric organic loads from 2.6 to 12.6 g carbohydrate L−1 day−1. The best results were achieved with applied volumetric organic loads of 12.6 g carbohydrate L−1 day−1 and cycle length of 12 h, resulting in mean volumetric productivity of 0.88 L H2 L−1 day−1, maximum molar flow of 10.80 mmol H2 h−1, and mean yield of 0.70 mol H2 mol−1 glucose consumed. The biogas H2 content was between 18 and 42%, while the mean organic compounds removal and carbohydrate conversion efficiencies were 23 and 81%, respectively. The inoculum produced by natural fermentation was not viable.  相似文献   

2.
This study aimed to evaluate the effect of the organic loading rate (OLR) (60, 90, and 120 g Chemical Oxygen Demand (COD). L?1. d?1) on hydrogen production from cheese whey and glycerol fermentation as cosubstrates (50% cheese whey and 50% glycerol on a COD basis) in a thermophilic fluidized bed reactor (55 °C). The increase in the OLR to 90 gCOD.L?1. d?1 favored the hydrogen production rate (HPR) (3.9 L H2. L?1. d?1) and hydrogen yield (HY) (1.7 mmol H2. gCOD?1app) concomitant with the production of butyric and acetic acids. Employing 16S rRNA gene sequencing, the highest hydrogen production was related to the detection of Thermoanaerobacterium (34.9%), Pseudomonas (14.5%), and Clostridium (4.7%). Conversely, at 120 gCOD.L?1. d?1, HPR and HY decreased to 2.5 L H2. L?1. d?1 and 0.8 mmol H2. gCOD?1app, respectively, due to lactic acid production that was related to the genera Thermoanaerobacterium (50.91%) and Tumebacillus (23.56%). Cofermentation favored hydrogen production at higher OLRs than cheese whey single fermentation.  相似文献   

3.
The increasingly severe environmental pollution and energy shortage issues have demanded the production of renewable and sustainable biofuels to replace conventional fossil fuels. Lignocellulosic (LC) biomass as an abundant feedstock for second-generation biofuel production can help overcome the shortcomings of first-generation biofuels related to the “food versus fuel” debate and feedstock availability. Embracing the “circular bioeconomy” concept, an integrated biorefinery platform of LC biomass can be performed by employing different conversion technologies to obtain multiple valuable products. This review provides an overview of the principles and applications of thermochemical processes (pyrolysis, torrefaction, hydrothermal liquefaction, and gasification) and biochemical processes (pretreatment technologies, enzyme hydrolysis, biochemical conversion processes) involved in LC biomass biorefinery for potential biofuel applications. The engineering perspective of LC biofuel production on separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP) were also discussed.  相似文献   

4.
There is a renewed interest in CeO2 for use in solar-driven, two-step thermochemical cycles for water splitting. However, despite fast reduction/oxidation kinetics and high thermal stability of ceria, the cycle capacity of CeO2 is low due to thermodynamic limitations. In an effort to increase cycle capacity and reduce thermal reduction temperature, we have studied binary zirconium-substituted ceria (ZrxCe1-xO2, x = 0.1, 0.15, 0.25) and ternary praseodymium/gadolinium-doped Zr-ceria (M0.1Zr0.25Ce0.65O2, M = Pr, Gd). We evaluate the oxygen cycle capacity and water splitting performance of crystallographically and morphologically stable powders that are thermally reduced by laser irradiation in a stagnation flow reactor. The addition of zirconium dopant into the ceria lattice improves O2 cycle capacity and H2 production by approximately 30% and 11%, respectively. This improvement is independent of the Zr dopant level, up to 25%, suggesting that above 10% Zr dopant level, Zr might be displaced during the high temperature annealing process. The addition of Pr and Gd to the binary Zr-ceria mixed oxide, on the other hand, is detrimental to H2 production. A kinetic analysis is performed using a model-based analytical approach to account for effects of mixing and dispersion, and to identify the rate controlling mechanism of the water splitting process. We find that the water splitting reaction at 1000 °C and with 30 vol% H2O, for all doped ceria samples, is surface limited and best described by a deceleratory power law model (F-model), similar to undoped CeO2. Additionally, we used density functional theory (DFT) calculations to examine the role of Zr, Pr, and Gd. We find that the addition of Pr and Gd induce non-redox active sites and, therefore, are detrimental to H2 production, in agreement with experimental work. The calculated surface H2 formation step was found to be rate limiting, having activation barriers greater than bulk O diffusion, for all materials. This agrees with and further explains experimental findings.  相似文献   

5.
Semiconductor driven artificial photocatalysis is the most sustainable technology towards addressing the growing energy and environmental pollution issues. In this context, alloyed quantum dots (QDs) are an emerging class of promising nanomaterials gathering tremendous attention in this area due to several beneficial features. Compared to other bulk semiconductors, alloyed QDs are cost-effective, stable, less-toxic with superior optoelectronic features, which significantly enhances their solar energy conversion efficiency. Herein, the present review summarizes the fundamentals of alloyed QDs, various synthesis techniques, and discusses optical as well as structural properties from data interpretation point of view taking suitably reported literature. Moreover, we have provided a comprehensive summary of recent state of art metal chalcogenides based alloyed QD systems towards H2 evolution, CO2 reduction, and pollutant degradation. Finally, the review discusses the associated challenges and future prospects of alloyed QDs with a special focus on preparation, property engineering, theoretical aspect, stability and other field application. Additionally, the overarching aim is to provide researchers an in-depth understanding in the field of alloyed QDs relating to synthesis, characterisation, and promotes their photocatalytic applications, and can foster as a manual to future researchers.  相似文献   

6.
Leachate generated in landfills is considered as a hazardous waste stream due to its composition and needs adequate treatment for environmental protection purposes. Nonetheless, a contemporary technology should not only be able to deal with its degradation, but at the same time, recover energy in various forms. Such valorization approaches with priority on these dual-aims are potentially those that rely on anaerobic biosystems. In the literature, processes considered on that matter include fermentative, digestive and bioelectrochemical set-ups to deliver energy-carriers such as biohydrogen (DF), biogas (AD) and electricity (BES), respectively. Moreover, to enhance the global efficiency of leachate utilization, it has been recently trending to develop integrated options by combining these systems (DF, AD, BES) into a cascade scheme. In this review, it is intended to give an insight to the research activities realized in these fields and show possible directions towards the better exploitation of leachate feedstock under anaerobic conditions.  相似文献   

7.
In spite of significant achievements in alkaline exchange membrane fuel cells (AEMFCs) in recent years, they are still lagging behind proton exchange membrane fuel cells (PEMFCs) due to performance instability. Among the relevant operational parameters of AEMFC, the researchers have found that poor water management within the cell was the main reason for failure of the system. In the past five years, numerous modeling and experimental works were reported proposing different strategies to improve water management of AEMFC. With proper water management, the achievable power output in AEMFCs is comparable with that of PEMFCs or even more. Efforts have to be continued, but AEMFCs can become a strong competitor in the market place. This review paper discusses the strategies and developments impacting water management of AEMFCs providing knowledge source for upcoming studies.  相似文献   

8.
Producing syngas and hydrogen from biofuels is a promising technology in the modern energy. In this work results of authors’ research aimed at design of supported membranes for oxygen and hydrogen separation are reviewed. Nanocomposites were deposited as thin layers on Ni–Al foam substrates. Oxygen separation membranes were tested in CH4 selective oxidation/oxi-dry reforming. The hydrogen separation membranes were tested in C2H5OH steam reforming. High oxygen/hydrogen fluxes were demonstrated. For oxygen separation membranes syngas yield and methane conversion increase with temperature and contact time. For reactor with hydrogen separation membrane a good performance in ethanol steam reforming was obtained. Hydrogen permeation increases with ethanol inlet concentration, then a slight decrease is observed. The results of tests demonstrated the oxygen/hydrogen permeability promising for the practical application, high catalytic performance and a good thermochemical stability.  相似文献   

9.
The use of fossil fuels is causing a huge environmental impact due to the emission of air pollutants, greenhouse gases, and other ground and water contaminants; also, these fuels are depleting; the world is facing an energy crisis in the years to come if no preventive actions are done. Renewable energies are arising as promising technologies that will complement and even replace conventional fuels shifting the global energy matrix to a cleaner and eco-friendly future. Microalgal biohydrogen is one of those emerging technologies that is showing positive results. This work provides an overview of the key parameters to produce hydrogen from microalgae especially from the genus Chlorella. Current status of chemical and biological hydrogen producing technologies is presented, along with the main metabolic processes for this purpose in microalgae, their characteristic enzymes, several strategies to induce hydrogen production, the key operation parameters and finally providing some remarks about scaling-up and industrial-scale applications.  相似文献   

10.
The present study aims to assess the proton conductivities of the most investigated proton exchange membranes (PEMs) used in PEM fuel cells (PEMFCs). Specifically, PEMs are analyzed for their use in anhydrous fuel cells and proton conductivity upper bounds were provided for them. Considering the direct relationship between proton conductivity and temperature, an upper bound is presented. Based on the obtained upper bounds, suitable membranes for high-temperature performance are determined, and the average range of proton conductivity for each polymer group is discussed. By comparing the available proton conductivity data with upper bound, it was demonstrated that some of poly (ionic liquid)s have provided the highest proton conductivities, however aromatic polymers such as polybenzimidazole (PBI) are found more suitable choices for application at anhydrous conditions and high temperatures. The proton conductivity upper bound for anhydrous PEMs demonstrates the availability of promising polymer options for the deployment of anhydrous fuel cells.  相似文献   

11.
《能源学会志》2020,93(5):1960-1969
Presently, sugarcane bagasse (SB) and oat hulls (OH) have a distinctive potential as a renewable source of biomass, due to its global availability, which is advantageous for producing liquid and gaseous fuels by thermochemical processes. Thermo-Catalytic Reforming (TCR) is a pyrolysis based technology for generating energy vectors (char, bio-oil and syngas) from biomass wastes. This work aims to study the conversion of SB and OH into fuels, using TCR in a 2 kg/h continuous pilot-scale reactor at different pyrolysis temperatures. The pyrolysis temperatures were studied at 400, 450 and 500 °C, while the subsequent reforming temperature remained constant at 500 °C. The bio-oil contained the highest calorific value of 33.4 and 33.5 MJ/kg for SB and OH, respectively at 500 °C pyrolysis temperature, which represented a notable increase compared to the raw material calorific value of SB and OH (16.4 and 16.0 MJ/kg, respectively), this was the result of deoxygenation reactions occurring. Furthermore, the increment of the pyrolysis temperature improved the water content, total acid number (TAN), viscosity and density of the bio-oil. The syngas and the biochar properties did not change significantly with the increase of the pyrolysis temperature. In order to use TCR bio-oil as an engine fuel, it is necessary to carry out some upgrading treatments; or blend it with fossil fuels if it is to be used as a transportation fuel. Overall, TCR is a promising future route for the valorisation of lignocellulosic residues to produce energy vectors.  相似文献   

12.
The present study is focused on bio hydrogen (H2) and bioplastic (i.e., poly-β-hydroxybutyrate; PHB) productions utilizing various wastes under dark fermentation, photo fermentation and subsequent dark-photo fermentation. Potential bio H2 and PHB producing microbes were enriched and isolated. The effects of substrate (rice husk hydrolysate, rice straw hydrolysate, dairy industry wastewater, and rice mill wastewater) concentration (10–100%) and pH (5.5–8.0) were examined in the batch mode under the dark and photo fermentation conditions. Using 100% rice straw hydrolysate at pH 7, the maximum bio H2 (1.53 ± 0.04 mol H2/mol glucose) and PHB (9.8 ± 0.14 g/L) were produced under dark fermentation condition by Bacillus cereus. In the subsequent dark-photo fermentation, the highest amounts of bio H2 and PHB were recorded utilizing 100% rice straw hydrolysate (1.82 ± 0.01 mol H2/mol glucose and 19.15 ± 0.25 g/L PHB) at a pH of 7.0 using Bacillus cereus (KR809374) and Rhodopseudomonas rutila. The subsequent dark-photo fermentative bio H2 and PHB productions obtained using renewable biomass (i.e., rice husk hydrolysate and rice straw hydrolysate) can be considered with respect to the sustainable management of global energy sources and environmental issues.  相似文献   

13.
The development of alternative fuels has been promoted by the extreme fossil fuel consumption brought on by urbanisation and deteriorating pollution. Due to its high energy and combustible qualities, biohydrogen has been perceived as a potential fuel substitute in dealing with issues related to the rising emission of greenhouse gases and global warming. As a source of carbon sequestration and sustainable renewable energy, biohydrogen synthesis by algae species has been prevalent in research scale. This review focuses on the novel and recent metabolic approaches for enhanced algal based biohydrogen production. Pretreatment methods available and scaling techniques used for enhancing the biohydrogen productivity using algal species have been elaborated in the review. Algal characteristics that make them suitable alternative for biohydrogen production are discussed briefly. Various pretreatment methods such as physical, chemical, biological and thermal are elaborated. In addition, the factors involved in influencing the biohydrogen productivity and the metabolic engineering approaches for modifying the pathway in algae are highlighted. Scaling up of process using different types of photobioreactors such as tubular, flat panel, airlift and stirred tank are reported that briefs about merits and demerits of each photobioreactor.  相似文献   

14.
The recent environmental-related issues such as climate change and global warming have sparked scientists' interest in finding a way to reduce the emission of greenhouse gases through dry reforming of CH4. As a result of this reaction, not only H2 is produced, but also CO2 and CH4 are reduced. Catalysts are needed due to the enhancement of the kinetics of the reaction. Non-noble metals like Ni, Co, etc., have shown promising activity, they are readily available, and have low cost; consequently, they have been widely employed for the reaction. In this paper, the recent advances in the development of the Ni- and Co-based nanocatalysts for DRM reaction, including the use of different supports and promoters, the addition of alkaline earth metals, and new structures like mesoporous silica and dendritic fibrous nano silica as supports were reviewed.  相似文献   

15.
Ammonia represents one of the most promising potential solutions as energy vector and hydrogen carrier, having a higher potential to transport energy than hydrogen itself in a pressurized form. Furthermore, solid oxide fuel cells (SOFCs) can directly be fed with ammonia, thus allowing for immediate electrical power and heat generation. This paper deals with the analysis of the dynamic behavior of commercial SOFCs when fueled with ammonia. Several measurements at different temperatures have been performed and performances are compared with hydrogen and a stoichiometrically equivalent mixture of H2 and N2 (3:1 M ratio). Higher temperature led to smaller drops in voltage for both fuels, thus providing higher efficiencies. Ammonia resulted slightly more performant (48% at 760 °C) than hydrogen (45% at 760 °C), in short stack tests. Moreover, different ammonia-to-air ratios have been investigated and the stack area-specific resistance has been studied in detail by comparing numerical modeling predictions and experimental values.  相似文献   

16.
Hydrogen has attracted attention worldwide with its favourable inherent properties to contribute towards a carbon-free green energy future. Australia aims to make hydrogen as its next major export component to economize the growing global demand for hydrogen. Cost-effective and safe large-scale hydrogen storage in subsurface geology can assist Australia in meeting the projected domestic and export targets. This article discusses the available subsurface storage options in detail by first presenting the projected demand for hydrogen storage. Australia has many subsurface formations, such as depleted gas fields, salt caverns, aquifers, coal seams and abandoned underground mines, which can contribute to underground hydrogen storage. The article presents basin-wide geological information on the storage structures, the technical challenges, and the factors to consider during site selection. With the experience and knowledge Australia has in utilizing depleted reservoirs for gas storage and carbon capture and sequestration, Australia can benefit from the depleted gas reservoirs in developing hydrogen energy infrastructure. The lack of experience and knowledge associated with other geostructures favours the utilization of underground gas storage sites for the storage of hydrogen during the initial stages of the shift towards hydrogen energy. The article also provides future directions to address the identified important knowledge gaps to utilize the subsurface geology for hydrogen storage successfully.  相似文献   

17.
Biohydrogen production from cassava starch wastewater was evaluated in anaerobic sequencing batch biofilm reactor (AnSBBR) using different inoculum (mixed cultures from naturally fermented wastewater and anaerobic sludge thermally treated) and feeding strategies (batch and fed-batch). The highest hydrogen productivity (2.4 LH2 L−1 d−1) and yield (11.7 molH2 kg−1Carbohydrates) were verified in low and intermediate organic load rates (12 and 14 g L−1 d−1) and longer cycle time (4 h), respectively. The productivity was favored by fed-batch strategy, and yield by batch. The hydrogen production was verified in both inoculum sources. However, in the assays inoculated from naturally fermented wastewater, with higher organic load rate (18 g L−1 d−1) and intermediate cycle time (3 h) no hydrogen was observed, regardless the feeding strategy, indicating that the inhibitory effects of the indigenous microorganisms present in cassava starch wastewater were more expressive in these conditions. The operational conditions applied to hydrogen production in AnSBBR from cassava starch wastewater may influence the microflora development in the reactor. In this study three possible scenarios were verified: hydrogen-producing bacteria (HPB) growth; hydrogen-producing bacteria inhibition or coexistence between ones and lactic acid bacteria (LAB), which are autochthones of this wastewater.  相似文献   

18.
In recent years, there has been considerable interest in the development of zero-emissions, sustainable energy systems utilising the potential of hydrogen energy technologies. However, the improper long-term economic assessment of costs and consequences of such hydrogen-based renewable energy systems has hindered the transition to the so-called hydrogen economy in many cases. One of the main reasons for this is the inefficiency of the optimization techniques employed to estimate the whole-life costs of such systems. Owing to the highly nonlinear and non-convex nature of the life-cycle cost optimization problems of sustainable energy systems using hydrogen as an energy carrier, meta-heuristic optimization techniques must be utilised to solve them. To this end, using a specifically developed artificial intelligence-based micro-grid capacity planning method, this paper examines the performances of twenty meta-heuristics in solving the optimal design problems of three conceptualised hydrogen-based micro-grids, as test-case systems. Accordingly, the obtained numeric simulation results using MATLAB indicate that some of the newly introduced meta-heuristics can play a key role in facilitating the successful, cost-effective development and implementation of hydrogen supply chain models. Notably, the moth-flame optimization algorithm is found capable of reducing the life-cycle costs of micro-grids by up to 6.5% as compared to the dragonfly algorithm.  相似文献   

19.
Hydrogen can be a promising clean energy carrier for the replenishment of non-renewable fossil fuels. The set back of hydrogen as an alternative fuel is due to its difficulties in feasible storage and safety concerns. Current hydrogen adsorption technologies, such as cryo-compressed and liquefied storage, are costly for practical applications. Metal-organic frameworks (MOFs) are crystalline materials that have structural versatility, high porosity and surface area, which can adsorb hydrogen efficiently. Hydrogen is adsorbed by physisorption on the MOFs through weak van der Waals force of attraction which can be easily desorbed by applying suitable heat or pressure. The strategies to improve the MOFs surface area, hydrogen uptake capacities and parameters affecting them are studied. Hydrogen spill over mechanism is found to provide high-density storage when compared to other mechanisms. MOFs can be used as proton exchange membranes to convert the stored hydrogen into electricity and can be used as electrodes for the fuel cells. In this review, we addressed the key strategies that could improve hydrogen storage properties for utilizing hydrogen as fuel and opportunities for further growth to meet energy demands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号