首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
This paper presents an experimental investigation for an improved process of sorption-enhanced steam reforming of methane in an admixture fixed bed reactor. A highly active Rh/CeαZr1−αO2 catalyst and K2CO3-promoted hydrotalcite are utilized as novel catalyst/sorbent materials for an efficient H2 production with in situ CO2 capture at low temperature (450–500 °C). The process performance is demonstrated in response to temperature (400–500 °C), pressure (1.5–6.0 bar), and steam/carbon ratio (3–6). Thus, direct production of high H2 purity and fuel conversion >99% is achieved with low level of carbon oxides impurities (<100 ppm). A maximum enhancement of 162% in CH4 conversion is obtained at a temperature of 450 °C and a pressure of 6 bar using a steam/carbon molar ratio of 4. The high catalyst activity of Rh yields an enhanced CH4 conversion using much lower catalyst/sorbent bed composition and much smaller reactor size than Ni-based sorption enhanced processes at low temperature. The cyclic stability of the process is demonstrated over a series of 30 sorption/desorption cycles. The sorbent exhibited a stable performance in terms of the CO2 working sorption capacity and the corresponding CH4 conversion obtained in the sorption enhanced process. The process showed a good thermal stability in the temperature range of 400–500 °C. The effects of the sorbent regeneration time and the purge stream humidity on the achieved CH4 conversion are also studied. Using steam purge is beneficial for high degree of CO2 recovery from the sorbent.  相似文献   

2.
This paper presents a study on optimization of a fixed bed tri-reformer reactor (TR). This reactor has been used instead of conventional steam reformer (CSR) and auto thermal reformer (CAR). A theoretical investigation has been performed in order to evaluate the optimal operating conditions and enhancement of methane conversion, hydrogen production and desired H2/CO ratio as a synthesis gas for methanol production. A mathematical heterogeneous model has been used to simulate the reactor. The process performance under steady state conditions was analyzed with respect to key operational parameters (inlet temperature, O2/CH4, CO2/CH4 and steam/CH4 ratios). The influence of these parameters on gas temperature, methane conversion, hydrogen production and H2/CO ratio was investigated. Model validation was carried out by comparison of the reforming model results with industrial data of CSR. Differential evolution (DE) method was applied as a powerful method for optimization. Optimum feed temperature and reactant ratios (CH4/CO2/H2O/O2) are 1100 K and 1/1.3/2.46/0.47 respectively. The optimized TR has enhanced methane conversion by 3.8% relative to industrial reformers in a single reactor. Methane conversion, hydrogen yield and H2/CO ratio in optimized TR are 97.9%, 1.84 and 1.7 respectively. The optimization results of tri-reformer were compared with the corresponding predictions from process simulation software operated at the same feed conditions.  相似文献   

3.
New experimental data are reported to demonstrate that a sorption enhanced reaction (SER) concept can be used to directly produce fuel-cell grade H2 (<20 ppm CO) by carrying out the catalytic, endothermic, steam-methane reforming (SMR) reaction (CH4 + 2H2O ↔ CO2 + 4H2) in presence of a CO2 selective chemisorbent such as K2CO3 promoted hydrotalcite at reaction temperatures of 520 and 550 °C, which are substantially lower than the conventional SMR reaction temperatures of 700-800 °C. The H2 productivity of the sorption enhanced reactor can be large, and the conversion of CH4 to H2 can be very high circumventing the thermodynamic limitations of the SMR reaction due to the application of the Le Chetalier's principle in the SER concept. Mathematical simulations of a cyclic two-step SER concept showed that the H2 productivity of the process (moles of essentially pure H2 produced per kg of catalyst-chemisorbent admixture in the reactor per cycle) is much higher at a reaction temperature of 590 °C than that at 550 or 520 °C. On the other hand, the conversion of feed CH4 to high purity H2 product is relatively high (>99+%) at all three temperatures. The conversion is much higher than that in a conventional catalyst-alone reactor at these temperatures, and it increases only moderately (<1%) as the reaction temperature is increased from 520 to 590 °C. These results are caused by complex interactions of four phenomena. They are (a) favorable thermodynamic equilibrium of the highly endothermic SMR reaction at the higher reaction temperature, (b) faster kinetics of SMR reaction at higher temperatures, (c) favorable removal of CO2 from the reaction zone at lower temperatures, and (d) higher cyclic working capacity for CO2 chemisorption at higher temperature.  相似文献   

4.
A detailed and comprehensive simulation model of a H2 production plant based on the Sorption Enhanced Reforming (SER) process of natural gas has been developed in this work. Besides thermodynamic advantages related to the shift of reforming equilibrium, SER technology features an intrinsic CO2 capture that can be of interest in environmentally constrained economies. The model comprises natural gas treatment, H2 and CO2 compression, as well as H2 purification with an adsorption unit that has been integrated within the SER process by using the off-gas for sorbent regeneration. A complete thermal integration has been also performed between the available hot gas streams in the plant, so that high pressure steam is generated and used to generate power in a steam cycle.  相似文献   

5.
The production of H2 via sorption enhanced steam reforming (SE-SMR) of CH4 using 18 wt % Ni/Al2O3 catalyst and CaO as a CO2-sorbent was simulated for an adiabatic packed bed reactor at the reduced pressures typical of small and medium scale gas producers and H2 end users. To investigate the behaviour of reactor model along the axial direction, the mass, energy and momentum balance equations were incorporated in the gPROMS modelbuilder®. The effect of operating conditions such as temperature, pressure, steam to carbon ration (S/C) and gas mass flow velocity (Gs) was studied under the low-pressure conditions (2–7 bar). Independent equilibrium based software, chemical equilibrium with application (CEA), was used to compare the simulation results with the equilibrium data. A good agreement was obtained in terms of CH4 conversion, H2 yield (wt. % of CH4 feed), purity of H2 and CO2 capture for the lowest (Gs) representing conditions close to equilibrium under a range of operating temperatures pressures, feed steam to carbon ratio. At Gs of 3.5 kg m−2s−1, 3 bar, 923 K and S/C of 3, CH4 conversion and H2 purity were up to 89% and 86% respectively compared to 44% and 63% in the conventional reforming process.  相似文献   

6.
In this work, tri‐reforming and steam reforming processes have been coupled thermally together in a reactor for production of two types of synthesis gases. A multitubular reactor with 184 two‐concentric‐tubes has been proposed for coupling reactions of tri‐reforming and steam reforming of methane. Tri‐reforming reactions occur in outer tube side of the two‐concentric‐tube reactor and generate the needed energy for inner tube side, where steam reforming process is taking place. The cocurrent mode is investigated, and the simulation results of steam reforming side of the reactor are compared with corresponding predictions for thermally coupled steam reformer and also conventional fixed‐bed steam reformer reactor operated at the same feed conditions. This reactor produces two types of syngas with different H2/CO ratios. Results revealed that H2/CO ratio at the output of steam and tri‐reforming sides reached to 1.1 and 9.2, respectively. In this configuration, steam reforming reaction is proceeded by excess generated heat from tri‐reforming reaction instead of huge fired‐furnace in conventional steam reformer. Elimination of a low performance fired‐furnace and replacing it with a high performance reactor causes a reduction in full consumption with production of a new type of synthesis gas. The reactor performance is analyzed on the basis of methane conversion and hydrogen yield in both sides and is investigated numerically for various inlet temperature and molar flow rate of tri‐reforming side. A mathematical heterogeneous model is used to simulate both sides of the reactor. The optimum operating parameters for tri‐reforming side in thermally coupled tri‐reformer and steam reformer reactor are methane feed rate and temperature equal to 9264.4 kmol h?1 and 1100 K, respectively. By increasing the feed flow rate of tri‐reforming side from 28,120 to 140,600 kmol h?1, methane conversion and H2 yield at the output of steam reforming side enhanced about 63.4% and 55.2%, respectively. Also by increasing the inlet temperature of tri‐reforming side from 900 to 1300 K, CH4 conversion and H2 yield at the output of steam reforming side enhanced about 82.5% and 71.5%, respectively. The results showed that methane conversion at the output of steam and tri‐reforming sides reached to 26.5% and 94%, respectively with the feed temperature of 1100 K of tri‐reforming side. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents detailed study of biogas reforming. Model biogas with different levels of H2S is subjected to reforming reaction over supported Ni catalyst in a fixed bed reactor at 700 °C and 800 °C. In order to understand the poisoning effects of H2S the reactions have been initially carried out without H2S in the feed stream. Three different H2S concentrations (20, 50 and 100 ppm) have been considered in the study. The H2O to CH4 ratio is maintained in such as way that CO2 also participates in the reforming reaction. After performing the poisoning studies, regeneration of the catalyst has been studied using three different techniques i) removal of H2S from the feed stream ii) temperature enhancement and iii) steam treatment. Poisoning at low temperature is not recoverable just by removal of H2S from the feed stream. However, poisoning at high temperature is easily reversed just by removal of H2S from the feed stream. Unlike some previous reports by Li et al. (2010) and Rostrup-nielsen (1971) [1,2], catalyst regeneration is achieved in shorter time frames for all the regeneration techniques attempted.  相似文献   

8.
This paper reports an experimental investigation on a novel reactor concept for steam-methane reforming with integrated CO2 capture: the gas switching reforming (GSR). This concept uses a cluster of fluidized bed reactors which are dynamically operated between an oxidation stage (feeding air) and a reduction/reforming stage (feeding a fuel). Both oxygen carrier reduction and methane reforming take place during the reduction stage. This novel reactor configuration offers a simpler design compared with interconnected reactors and facilitates operation under pressurized conditions for improved process efficiency.The performance of the bubbling fluidized bed reforming reactor (GSR) is evaluated and compared with thermodynamic equilibrium. Results showed that thermodynamic equilibrium is achieved under steam-methane reforming conditions. First, a two-stage GSR configuration was tested, where CH4 and steam were fed during the entire reduction stage after the oxygen carrier was fully oxidized during the oxidation stage. In this configuration a large amount of CH4 slippage was observed during the reduction stage. Therefore, a three-stage GSR configuration was proposed to maximize fuel conversion, where the reduction stage is completed with another fuel gas with better reactivity with the oxygen carrier, e.g. PSA-off gases, after a separate reforming stage with CH4 and steam feeds. A high GSR performance was achieved when H2 was used in the reduction stage. A sensitivity analysis of the GSR process performance on the oxygen carrier utilization and target working temperature was carried out and discussed.  相似文献   

9.
This study employed the concept of heat recovery to design a set of reformer to facilitate the methane dry reforming (MDR), through which syngas (H2+CO) could be generated. The MDR involves an endothermic reaction and thus additional energy is required to sustain it. According to the concept of industrial heat recovery, the energy required to facilitate the MDR was recovered from waste heat. In addition, after the reforming reaction, the waste heat inside the reformer was used for internal heat recovery to preheat the reactants (CO2+CH4) to reduce the amount of energy required for the reforming reaction. Regarding the parameter settings in the experiments, the CH4 feed flow rate was set at 1–2.5 NL/min and the mole ratio for CO2/CH4 was set at 0.43–1.22. Subsequently, an oven was used to simulate a heat recovery environment to facilitate the dry reforming experiment. The experimental results indicated that an increase in oven temperature could increase the reforming reaction temperature and elevate the energy for the reformer. H2 and CO production could increase when the reformer gained more energy. The high-temperature gas generated from the reforming reaction was applied to facilitate internal heat recovery of reformer and preheat the reactants; thus, the efficiency of reforming and CO2 conversion were evidently elevated. The theoretical equilibrium analysis indicated that the thermal efficiency of reforming increased with the increase of CO2/CH4 molar ratio. While, the thermal efficiency of reforming by experiments decreased with the increase of the CH4 feed rate, but increased with the increase of CO2/CH4. In summary, the experimental results revealed that the overall H2 was 0.017–0.019 mol/min. In addition, the reforming efficiency was 8.76%–78.08%, the CO2 conversion was 53.92%–96.43%, and the maximum thermal efficiency of reforming was 102.3%.  相似文献   

10.
In the SER (sorption enhanced reforming) gasification process a nitrogen-free, high calorific product gas can be produced. In addition, due to low gasification temperatures of 600–750 °C and the use of limestone as bed material, in-situ CO2 capture is possible, leading to a hydrogen-rich and carbon-lean product gas. In this paper, results from a bubbling fluidised bed gasification model are compared to results of process demonstration tests in a 200 kWth pilot plant.Based upon that, a concept for the hydrogen production via biomass SER gasification is studied in terms of efficiency and feasibility. Capital and operational expenditures as well as hydrogen production costs are calculated in a techno-economic assessment study. Furthermore, market framework conditions are discussed under which an economic hydrogen production via SER gasification is possible.  相似文献   

11.
In order to improve the hydrogen production efficiency by glycerol steam reforming, a membrane-assisted fluidized bed reactor with carbon dioxide sorption is developed to enhance the reforming process. Low-temperature operation in a membrane reactor is necessary considering the thermal stability of membrane. In this work, the sorption-enhanced glycerol steam reforming process in a fluidized bed membrane reactor under the condition of low temperature is numerically investigated, where the hydrotalcite is employed as CO2 sorbents. The impact of operating pressure on the reforming performance is further evaluated. The results demonstrate that the integration of membrane hydrogen separation and CO2 sorption can effectively enhance the low-temperature glycerol reforming performance. The fuel conversion above 95% can be achieved under an elevated pressure.  相似文献   

12.
The effect of non-uniform temperature on the sorption-enhanced steam methane reforming (SE-SMR) in a tubular fixed-bed reactor with a constant wall temperature of 600 °C is investigated numerically by an experimentally verified unsteady two-dimensional model. The reactor uses Ni/Al2O3 as the reforming catalyst and CaO as the sorbent. The reaction of SMR is enhanced by removing the CO2 through the reaction of CaO + CO2 → CaCO3 based on the Le Chatelier's principle. A non-uniform temperature distribution instead of a uniform temperature in the reactor appears due to the rapid endothermic reaction of SMR followed by an exothermic reaction of CO2 sorption. For a small weight hourly space velocity (WHSV) of 0.67 h?1 before the CO2 breakthrough, both a low and a high temperature regions exist simultaneously in the catalyst/sorbent bed, and their sizes are enlarged and the temperature distribution is more non-uniform for a larger tube diameter (D). Both the CH4 conversion and the H2 molar fraction are slightly increased with the increase of D. Based on the parameters adopted in this work, the CH4 conversion, the H2 and CO molar fractions at D = 60 mm are 84.6%, 94.4%, and 0.63%, respectively. After CO2 breakthrough, the reaction of SMR dominates, and the reactor performance is remarkably reduced due to low reactor temperature.For a higher value of WHSV (4.03 h?1) before CO2 breakthrough, both the reaction times for SMR and CO2 sorption become much shorter. The size of low temperature region becomes larger, and the high temperature region inside the catalyst/sorbent bed doesn't exist for D ≥ 30 mm. The maximum temperature difference inside the catalyst/sorbent bed is greater than 67 °C. Both the CH4 conversion and H2 molar fraction are slightly decreased with the increase of D. However, this phenomenon is qualitatively opposite to that for small WHSV of 0.67 h?1. The CH4 conversion and H2 molar fraction at D = 60 mm are 52.6% and 78.7%, respectively, which are much lower than those for WHSV = 0.67 h?1.  相似文献   

13.
Bifunctional composite catalysts are very intrigued to produce hydrogen via CO2 sorption enhanced CH4/H2O reforming. However, their hydrogen production performance declined over multiple cycles, owing to the structure collapse and the sintering of active component under high-temperature regeneration. This work reported the facile synthesis of long-lasting Ni–Al2O3/CaO–CaZrO3 composite catalysts with less inert components (36 wt%) for stable hydrogen production over the multiple cycles of CO2 sorption enhanced CH4/H2O reforming. The effects of reaction and regeneration temperature on the hydrogen production performance of Ni–Al2O3/CaO–CaZrO3 were explored. Ni–Al2O3/CaO–CaZrO3 demonstrated high activity and stability while fixing reaction temperature as 600 °C and regeneration temperature as 750 °C. Of particular importance, H2 concentration was 98 vol% even after 10 hydrogen production cycles due to the inert component CaZrO3 having a cross-linked structure. The distribution of CaZrO3 in the composite as a coral-like structure inhibited the sintering of CaO through high Taman temperature and physical separation. Moreover, it provided the skeleton support and pore volume for the repeated expansion and contraction process of CaO to CaCO3 during the cycling process. Finally, the sintering of Ni slowed down in appropriate regeneration temperature to maintain the structure of the composite catalyst, which further improved the catalyst's stability over multiple cycles.  相似文献   

14.
An experimental study was performed on sorption enhanced steam methane reforming (SESMR) by Ni-mayenite reforming catalyst and CaO-mayenite CO2-sorbents with several CaO contents. Materials were synthesized, characterized (by XRD, BET and BJH methods, TPR) and tested in a micro-reactor, comparing two configurations: two separated, consequential packed-beds and the more usual raw mixing. Ni-mayenite always allowed a high, stable CH4 conversion (>93%). A generalized direct effect from CO2 capture emerged on water gas shift reaction extent, while enhancement of methane conversion took place only in raw mixing.In practical applications, investigated materials are bound to face alternatively reforming and sorbent regeneration conditions: an automated bench-scale system was used to perform 205 SESMR/regeneration cycles, with separate beds of Ni-mayenite and CaO-mayenite (30 wt% free-CaO), proving good activity and stability throughout cycles (stable CH4 conversion > 95%, pre-breakthrough CO2 concentration < 3 vol% dry, dilution-free).  相似文献   

15.
Dry reforming of CH4 on a platinum-rhodium alumina catalyst is selected to numerically investigate biogas reforming process. Langmuir-Hinshelwood-Hougen-Watson (LHHW) rate expressions for dry reforming and reverse water-gas shift reactions are presented. Activation energies are estimated by combining microkinetics with the theory of unity bond index-quadratic exponential potential (UBI-QEP). Pre-exponential factors are initially obtained by using the transition state theory (TST) and optimised, later, by minimising errors between modelling and experimental data. Adsorption of CH4 on the catalyst surface is found to be the rate determining step in the range of relatively low temperature (600–770 °C), while at relatively high temperature (770–950 °C) the thermal cracking of adsorbed CH4 is the rate controlling step. Small effect of reverse water-gas shift reaction results in the ratio of H2 to CO produced less than unity for all operating conditions. The simulation shows that the dry reforming process proceeds with reaction rate far from equilibrium state. The presented mechanism is capable of predicting the dependence of biogas dry reforming activities (e.g., reactant conversions, product formations, H2 to CO ratio, and temperature profile inside the catalyst) on operating conditions (e.g., inlet temperature, heat supplied through the catalyst wall, and composition of biogas at inlet).  相似文献   

16.
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation.  相似文献   

17.
In this work, the Gibbs energy minimization method is applied to investigate the unmixed steam reforming (USR) of methane to generate hydrogen for fuel cell application. The USR process is an advanced reforming technology that relies on the use of separate air and fuel/steam feeds to create a cyclic process. Under air flow (first half of the cycle), a bed of Ni-based material is oxidized, providing the heat necessary for the steam reforming that occurs subsequently during fuel/steam feed stage (second half of the cycle). In the presence of CaO sorbent, high purity hydrogen can be produced in a single reactor. In the first part of this work, it is demonstrated that thermodynamic predictions are consistent with experimental results from USR isothermal tests under fuel/steam feed. From this, it is also verified that the reacted NiO to CH4 (NiOreacted/CH4) molar ratio is a very important parameter that affects the product gas composition and decreases with time. At the end of fuel/steam flow, the reforming reaction is the most important chemical mechanism, with H2 production reaching ∼75 mol%. On the other hand, at the beginning of fuel/steam feed stage, NiO reduction reactions dominate the equilibrium system, resulting in high CO2 selectivity, negative steam conversion and low concentrations of H2. In the second part of this paper, the effect of NiOreacted/CH4 molar ratio on the product gas composition and enthalpy change during fuel flow is investigated at different temperatures for inlet H2O/CH4 molar ratios in the range of 1.2-4, considering the USR process operated with and without CaO sorbent. During fuel/steam feed stage, the energy demand increases as time passes, because endothermic reforming reaction becomes increasingly important as this stage nears its end. Thus, the duration of the second half of the cycle is limited by the conditions under which auto-thermal operation can be achieved. In absence of CaO, H2 at concentrations of approximately 73 mol% can be produced under thermo-neutral conditions (H2O/CH4 molar ratio of 4, with NiOreacted/CH4 molar ratio at the end of fuel flow of ∼0.8, in temperature range of 873-1073 K). In the presence of CaO sorbent, using an inlet H2O/CH4 molar ratio of 4 at 873 K, H2 at concentrations over 98 mol% can be obtained all through fuel/steam feed stage. At 873 K, carbonation reaction provides all the heat necessary for H2 production when NiOreacted/CH4 molar ratio reached at the end of fuel/steam feed is greater or equal to1. In this way, the heat released during air flow due to Ni oxidation can be entirely used to decompose CaCO3 into CaO. In this case, a calcite-to-nickel molar ratio of 1.4 (maximum possible value) can be used during air flow. For longer durations of fuel/steam feed, corresponding to lower NiOreacted/CH4 molar ratios, some heat is necessary for steam reforming, and a calcite-to-nickel molar ratio of about 0.7 is more suitable. With the USR technology, CaO can be regenerated under air feeds, and an economically feasible process can be achieved.  相似文献   

18.
Hydrogen production by coupled catalytic partial oxidation (CPO) and steam methane reforming of methane (OSMR) at industrial conditions (high temperatures and pressures) have been studied over supported 1 wt.% NiB catalysts. Mixture of air/CH4/H2O was applied as the feed. The effects of O2:CH4 ratio, H2O:CH4 ratio and the gas hourly space velocity (GHSV) on oxy-steam reforming (OSRM) were also studied. Results indicate that CH4 conversion increases significantly with increasing O2:CH4 or H2O:CH4 ratio. However, the hydrogen mole fraction goes through a maximum, depending on reaction conditions, e.g., pressure, temperature and the feed gases ratios. Carbon deposition on the catalysts has been greatly decreased after steam addition. The supported 1 wt.% NiB catalysts exhibit high stability with 85% methane conversion at 15 bar and 800 °C during 70 h time-on-stream reaction (CH4:O2:H2O:N2 = 1:0.5:1:1.887). The thermal efficiency was increased from 35.8% by CPO (without steam) to 55.6%. The presented data would be useful references for further design of enlarged scale hydrogen production system.  相似文献   

19.
H2 yield and purity from sorption enhanced steam reforming (SE-SR) are determined by temperature, S:C ratio in use, and feed gas composition in hydrocarbons, N2 and CO2. Gases with high hydrocarbons composition had the highest H2 yield and purity. The magnitude of sorption enhancement effects compared to conventional steam reforming (C-SR), i.e. increases in H2 yield and purity, and drop in CH4 yield were remarkably insensitive to alkane (C1C3) and CO2 content (0.1–10 vol%), with only N2 content (0.4–70 vol%) having a minor effect. Although the presence of inert (N2) decreases the partial pressure of the reactants which is beneficial in steam reforming, high inert contents increase the energetic cost of operating the reforming plants. The aim of the study is to investigate and demonstrate the effect of actual shale gas composition in the SE-SR process, with varied hydrocarbon fractions, CO2 and N2 in the feedstock.  相似文献   

20.
Optimization of steam methane reforming (SMR) reaction by CO2 sorption enhancement was investigated. In this study, the sorption-enhanced steam methane reforming reaction (SESMR) was conducted to maximize hydrogen production via suitable adjustments in the operating conditions of the reaction, which include the molar ratio of steam to CH4, space velocity, and temperature. The reforming catalysts were prepared by a physical mixture of 20 wt% Ni/Al2O3 and CaO. The results reveal that there are significant differences in CH4 conversion between the SMR and the SESMR from 18% to 108%; this conversion strongly depended on the reaction conditions. High-purity H2 products (98.9%) with <0.1 ppmv CO were obtained by SESMR under the suitable conditions of 2600 cm3/g/h, steam/CH4 molar ratio of 4 and 823 K. This implies that the high-quality H2 produced through the SESMR process could be directly used for the proton-exchange membrane fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号