首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental hydrogen embrittlement has become a non-negligible problem in the hydrogen blended natural gas transportation. To qualitatively study the degradation mechanism of X80 steel used in the natural gas pipelines, the slow strain tensile experiments are carried out in this work. The nitrogen and hydrogen are adopted to simulate the hydrogen blended natural gas to explore the tensile properties of X80 steel. According to the volume proportion of hydrogen, the test atmospheres are divided into the reference atmosphere and the hydrogen-contained atmospheres of 1%, 2.2% and 5%. The tensile experiments of the smooth and notched specimens are conducted in the above gas atmospheres. Mechanical properties and fracture morphologies after stretching are further analyzed. The results show that the hydrogen blended natural gas has little effect on the tensile and yield strengths. Distinguished from the hydrogen volume proportion of 1% and 2.2%, with the increase of hydrogen proportion, the effect of hydrogen on mechanical properties of specimens increases significantly. Moreover, the deteriorated mechanical properties of notched specimens are more seriously than those of smooth specimens. This work provides the basis for safe hydrogen proportion for X80 pipeline steel when transporting hydrogen blended natural gas.  相似文献   

2.
Blending hydrogen into existing natural gas pipelines has been proposed as a means of increasing the output of renewable energy systems such as large wind farms. X80 pipeline steel is commonly used for transporting natural gas and such steel is subjected to concurrent hydrogen invasion with mechanical loading while being exposed to hydrogen containing environments directly, resulting in hydrogen embrittlement (HE). In accordance with American Society for Testing and Materials (ASTM) standards, the mechanical properties of X80 pipeline steel have been tested in natural gas/hydrogen mixtures with 0, 5.0, 10.0, 20.0 and 50.0vol% hydrogen at the pressure of 12 MPa. Results indicate that X80 pipeline steel is susceptible to hydrogen-induced embrittlement in natural gas/hydrogen mixtures and the HE susceptibility increases with the hydrogen partial pressure. Additionally, the HE susceptibility depends on the textured microstructure caused by hot rolling, especially for the notch specimen. The design calculation by the measured fatigue data reveals that the fatigue life of the X80 steel pipeline is dramatically degraded by the added hydrogen.  相似文献   

3.
The low-cycle fatigue and fatigue crack growth (FCG) properties of X80 pipeline steel in hydrogen atmosphere were determined to investigate the variation of hydrogen pressure and its influence on fatigue life. The test environment was switched to a hydrogen atmosphere after 1000, 3000, or 5000 cycles of pre-fatigue testing in a nitrogen atmosphere. Notch tensile tests were conducted in nitrogen and hydrogen atmospheres after the specimens were pre-fatigued for 3000 or 5000 cycles. The results showed that the cycles to failure of X80 decreased exponentially with increasing hydrogen pressure. When the displacement amplitude (DA) values remained steady (below 3000 cycles), the X80 steels showed no noticeable deterioration in the fatigue properties with or without hydrogen. When the DA values increased (above 5000 cycles), cracks propagated slowly and fatigue properties were strongly reduced in the hydrogen atmosphere, but not in nitrogen. Hydrogen-accelerated crack growth dominates the reduction of fatigue life below 0.6 MPa of hydrogen pressure. Hydrogen-accelerated crack initiation plays a more important role than FCG in the reduction of fatigue life with increasing hydrogen pressure.  相似文献   

4.
Effects of internal hydrogen and surface-absorbed hydrogen on hydrogen embrittlement (HE) of X80 pipeline steel were investigated by using different strain rate tensile test, annealing and hydrogen permeation tests. HE of X80 pipeline steel is affected by internal hydrogen and surface-absorbed hydrogen, and the latter plays a major role due to its higher effective hydrogen concentration. The HE susceptibility decreases with increasing the strain rate because it is more difficult for hydrogen to be captured by dislocations at the high strain rate. Annealing at 200 °C can weakened HE caused by internal hydrogen, while it has little effect on HE caused by surface-absorbed hydrogen. HE of X80 pipeline steel is mainly determined by the behavior of dislocation trapping hydrogen, which can be attributed to the interaction between hydrogen and dislocation.  相似文献   

5.
Hydrogen embrittlement (HE) of high-grade pipeline welded joint is a threat to hydrogen gas transport. In this research, slow strain rate tension (SSRT) tests in high-pressure hydrogen gas, combined with hydrogen permeation tests and microstructure analysis were conducted on X80 steel, intercritical heated-affected zone (ICHAZ), fine-grained heat-affected zone (FGHAZ) and coarse-grained heat-affected zone (CGHAZ). The change of HE susceptibility from high to low was CGHAZ, FGHAZ, ICHAZ, and base metal. Microstructure was the important factor influencing hydrogen permeation and susceptibility to HE. Susceptibility to HE was increased in the order of “fine-grained massive ferrite (MF) and acicular ferrite (AF)”, “fine-grained granular bainite (GB) and MF”, “coarse-grained GB and bainite ferrite (BF) embedded with martensite-austenite (M-A) constitute”. The fine-grained MF and AF in base metal with lower hydrogen diffusivity can impede the embrittlement behaviour, while the coarse-grained GB and BF with higher hydrogen diffusivity in CGHAZ increased its susceptibility to HE.  相似文献   

6.
The effects of fatigue damage on the hydrogen embrittlement (HE) sensitivity of X80 steel welded joints, obtained using flux-cored arc welding method, were investigated in the study. Results show that both the yield and tensile strength increased for all the hydrogen-charged welded joints and decreased with the accumulation of fatigue damage. The fracture surface is the mixture of local quasi-cleavage (QC) surrounded by shallow dimples ductile fracture for hydrogen-charged welded joints, whilst that of hydrogen-free welded joint is typical dimple ductile fracture. The presence of fisheye morphology might be related to the hydrogen, local strain accumulation in the vicinity of inclusions and dislocations evolution caused by the cyclic load. The mechanism is the synergistic action of hydrogen-enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP). However, the pinning effect of hydrogen on the dislocation motion is the dominant role.  相似文献   

7.
In this study, the effect of a low partial hydrogen in a mixture with natural gas on the tensile, notched tensile properties, and fracture toughness of pipeline steel X70 is investigated. An artificial HE aging is simulated by exposing the tested sample to the mixture gas condition for 720 h. In addition, a series of tests is conducted in ambient air and 10 MPa of 100% He and H2. Overall, 10 MPa of 100% H2 significantly degrades the mechanical properties of an X70 pipeline steel. However, it is observed that the 10 MPa gas mixture with 1% H2 does not affect the mechanical properties when tested with a smooth tensile specimen. In the notched tensile test, a significant reduction in loss in the area is observed when tested with a notched specimen with a notch radius of 0.083 mm. It is also confirmed that a 10-MPa gas mixture with 1% H2 causes a remarkable reduction in the toughness. The influence of the exposure time to 1% hydrogen in a mixture with natural gas was found to be minor.  相似文献   

8.
In this work, the influence of hydrogen on the microstructure and fracture toughness of API 5L X80 high strength pipeline steel welded by friction stir welding was assessed. Samples were hydrogenated at room temperature for a duration of 10 h in a solution of 0.1 M H2SO4 + 10 mg L−1 As2O3, with an intensity current of 20 mA cm−2. Fracture toughness tests were performed at 0 °C in single-edged notched bending samples, using the Critical Crack Tip Opening Displacement (CTOD) parameter. Notches were positioned in different regions within the joint, such as the stir zone, hard zone, and base material. Hydrogen induces internal stress between bainite packets and ferrite plates within bainite packets. Besides, hydrogen acted as a reducer of the strain capacity of the three zones. The base metal had a moderate capacity to resist stable crack growth, displaying a ductile fracture mechanism. While the hard zone showed a brittle behavior with CTOD values below the acceptance limits for pipeline design (0.1–0.2 mm). The fracture toughness of the stir zone is higher than that of the base metal. Nevertheless, the stir zone displayed higher data dispersion due to its high inhomogeneity. Hence, it can also show a brittle behavior with critical CTOD values.  相似文献   

9.
When blending hydrogen into existing natural gas pipelines, the non-uniform concentration distribution caused by the density difference between hydrogen and natural gas will result in the fluctuations of local hydrogen partial pressure, which may exceed the set one, leading to pipeline failure, leakage, measurement error, and terminal appliance. To solve the problem, the H2–CH4 stratification in the horizontal and undulated pipe was investigated experimentally and with numerical simulations. The results show that in the gas stagnant situation, hydrogen-methane blending process will cause an obvious stratification phenomenon. The relations between the elevation, pressure, hydrogen fraction, etc., and the gas stratification are figured out. Moreover, even when the blended gas flows at a low rate, the hydrogen-caused stratification should also be considered. Thereafter, the blended gas should be controlled into a situation with low pressure and high speed, which could help to set the pressure, speed, the fraction of H2.  相似文献   

10.
By limiting the pipes thickness necessary to sustain high pressure, high-strength steels could prove economically relevant for transmitting large gas quantities in pipelines on long distance. Up to now, the existing hydrogen pipelines have used lower-strength steels to avoid any hydrogen embrittlement. The CATHY-GDF project, funded by the French National Agency for Research, explored the ability of an industrial X80 grade for the transmission of pressurized hydrogen gas in large diameter pipelines. This project has developed experimental facilities to test the material under hydrogen gas pressure. Indeed, tensile, toughness, crack propagation and disc rupture tests have been performed. From these results, the effect of hydrogen pressure on the size of some critical defects has been analyzed allowing proposing some recommendations on the design of X80 pipe for hydrogen transport. Cost of Hydrogen transport could be several times higher than natural gas one for a given energy amount. Moreover, building hydrogen pipeline using high grade steels could induce a 10 to 40% cost benefit instead of using low grade steels, despite their lower hydrogen susceptibility.  相似文献   

11.
Blending hydrogen into high-strength pipeline steels for high-pressure transmission may cause materials' hydrogen embrittlement (HE) failure. Although the hydrogen-induced failure of metallic materials has been studied for a long time, the process of hydrogen into the materials, hydrogen-induced delayed failure, and dynamic mechanisms of high-strength pipeline steels under high pressure have not been fully understood. This paper aims to provide a detailed review of the latest research on the hydrogen-induced failure of high-strength pipeline steels in hydrogen-blended natural gas transmission. First, introduced the typical hydrogen blending natural gas pipeline transmission projects and their associated research conclusions. Then, described the physical process of the HE in high-strength pipeline steels and the principle, development, and latest research progress of typical hydrogen embrittlement mechanisms in detail. Third, reviewed the research methods and progress of experimental and theoretical simulations for the HE in steels, including hydrogen permeation (HP) experiments, hydrogen content measurements, hydrogen distribution detection, mechanical property tests, and molecular dynamics simulations. The shortcomings of existing experimental and theoretical simulation methods in the hydrogen-induced analysis of high-strength natural gas pipeline steels under high pressure are discussed. Finally, the future research directions and challenges of this problem are proposed from three aspects: the multimechanism synergy mechanism, the improvement of experimental methods, and the establishment of a new interatomic multiscale model.  相似文献   

12.
In this study, the number and size distribution of vanadium precipitates and their effects on hydrogen trapping efficiency and hydrogen-induced cracking (HIC) susceptibility were investigated in X80 pipeline steel. The results showed that as the vanadium content increased, the number of nanoscale vanadium precipitates clearly increased. Furthermore, the amount of hydrogen atoms trapped by vanadium precipitates gradually increased and the hydrogen diffusion coefficient decreased from 4.74 × 10?6 cm2 s?1 in the vanadium-free V0 steel to 8.48 × 10?7 cm2 s?1 in the V4 steel with 0.16% V, according to hydrogen permeation results. It also reduced the possibility of hydrogen atoms diffusing into the sites of harmful defects such as large-size oxides and elongated MnS inclusions, where cracks were caused more easily. In addition, the V3 steel with 0.12% V, containing the largest number of vanadium carbide particles of less than 60 nm, had the lowest HIC susceptibility.  相似文献   

13.
Hydrogen-induced damage is an inevitable challenge in pipeline safety applications, especially, the fusion welded joints owing to microstructure heterogeneity caused by welding process. In this work, X100 pipeline steel was subjected to friction stir welding (FSW) at rotation rates of 300–600 rpm under water cooling, and the relationship among the microstructure, hydrogen diffusivity, and hydrogen embrittlement (HE) behavior of the nugget zone (NZ) were studied. The NZ at 600 rpm had the highest effective hydrogen diffusion coefficient (Deff) of 2.1 × 10?10 m2/s because of the highest dislocation density and lowest ratio of effective grain boundary. The Deff decreased with decreasing rotation rate due to the decrease of dislocation density and the increase of ratio of effective grain boundary, and the lowest Deff of 1.32 × 10?10 m2/s was obtained at 300 rpm. After hydrogen charging, the tensile strength of all specimens decreased slightly, while the elongation decreased significantly. As the rotation rate decreased, the elongation loss was obviously inhibited, and ultimately a lowest elongation loss of 31.8% was obtained at 300 rpm. The abovementioned excellent mechanical properties were attributed to the fine ferrite/martensite structure, low Deff, and strong {111}//ND texture dramatically inhibiting hydrogen-induced cracking initiation and propagation.  相似文献   

14.
A three-dimensional finite cohesive element approach has been developed and applied in order to simulate the crack initiation of hydrogen-induced fracture. A single edge notched tension specimen of an X70 weld heat affected zone was simulated. The results were compared to similar two-dimensional plane strain model and the cohesive parameters were calibrated to fit the experimental results. The three dimensional simulations gave higher values in terms of opening stress at the stress peak, plastic strain levels at the crack tip and hydrogen lattice concentration when compared with two-dimensional simulations under the same global net section stress levels. Nevertheless a higher cohesive strength was needed for the 2D model for the onset of crack propagation. The best fit to the experimental data were obtained for a cohesive strength of 1840 MPa and 1620 MPa for the 2D and 3D simulation respectively. The critical opening was assigned to 0.3 mm for both models. The threshold stress intensities KIC,HE were 142 MPa√m and 146 MPa√m for the 2D and 3D models, respectively.  相似文献   

15.
This work develops a theoretical analysis of the coating permeability necessary for use as internal coatings of transmission pipelines to prevent hydrogen embrittlement. Internal coating materials suitable to be applied in situ on existing steel pipelines are also evaluated. Twelve different commercially available coatings; crosslinked poly (vinyl alcohol) (PVA), poly (vinyl chloride) and bisphenol A diglycidyl ether (DGEBA)/polyetheramine (D-400) epoxy coatings prepared in-house were tested. Films fabricated from two commercial epoxies had hydrogen permeability of 0.40 Barrer and 0.35 Barrer respectively, which show potential as coating materials. A hydrogen permeability of 0.0084 Barrer was achieved with a crosslinked poly (vinyl alcohol) coating, indicating that this material shows the highest potential of all coatings tested. Unsteady-state hydrogen diffusion through coated steel was then modeled to evaluate the effect of the coating film in reducing hydrogen embrittlement. The result shows that with a 2 mm PVA coating, hydrogen permeation inside the coating will take seven years to reach equilibrium and the final hydrogen concentration on the steel surface will be 44% lower than that without a coating. Greater protection can be provided if coatings can be developed with lower hydrogen permeability.  相似文献   

16.
In this work, the hydrogen-induced cracking (HIC) behavior of X100 pipeline steel was investigated by a combination of tensile test, electrochemical hydrogen permeation measurement and surface characterization techniques. The effect of inclusions in the steel on the crack initiation was analyzed. Results demonstrated that the amount of hydrogen-charging into the X100 steel specimen increases with the charging time and charging current density. Hydrogen-charging will enhance the susceptibility of the steel to HIC. The cracks initiate primarily at inclusions, such as aluminum oxides, titanium oxides and ferric carbides, in the steel. The diffusivity of hydrogen at room temperature in X100 steel is determined to be 1.04 × 10−8 cm2/s.  相似文献   

17.
An optimum finish rolling deformation (FRD) of thermomechanical controlled processing (TMCP) is suggested to improve the hydrogen-induced ductility loss of high-vanadium X80 pipeline steel in this study. The results demonstrate that with increasing FRD the microstructure refines, the grain size of the steel decreases and the recrystallization degree deepens. The increase of FRD leads to the reduction of low angle grain boundaries (LAGBs) and the grains oriented with plane {100} parallel to normal direction ({100}//ND) fibres, which plays a significant role in improving the resistance of crack propagation. Besides, the differences of effective hydrogen diffusion coefficient and diffusible hydrogen concentration are negligible among four experimental steels with various FRD. However, the best hydrogen-induced ductility loss resistance is obtained in the steel with 40% FRD containing the most nano-scale precipitates acting as effective hydrogen traps.  相似文献   

18.
Hydrogen permeation and distribution at pipeline welds is critical to integrity maintenance of the pipelines, especially for those made of high-strength steels. The situation becomes even more important under stressing conditions. In this work, metallographic characterization and micro-hardness measurements were conducted at an X80 steel weld. Potentiodynamic polarization and electrochemical hydrogen permeation testing were performance at various zones at the weld, along with numerical modeling of hydrogen distribution at the zones. The X80 steel contains a microstructure of bainite bundles and polygonal ferrite. There are more polygonal ferrite, fewer bainite and some segregated cementite at heat-affected zone (HAZ). The weld metal is featured with acicular ferrite and some grain boundary ferrite. HAZ softening occurs at the weld. The hardness of the weld metal, HAZ and base steel is about 290, 248 and 261 HV0.2, respectively. There is the greatest corrosion current density, i.e., corrosion rate, at HAZ under both elastic and plastic stresses. An applied stress further increases the corrosion current density. Under the plastic stress of 1.1σys (σys is yield strength), the corrosion current densities of HAZ, base steel and weld metal are 41.04, 17.03 and 25.49 μA/cm2, respectively. There are always the greatest hydrogen trapping density and the smallest hydrogen diffusivity at HAZ. Hydrogen, once penetrating the welded steel, tends to accumulate at the HAZ, compared with other two zones. When the welded steel is under stresses, especially a plastic stress (i.e., 1.1σys), the hydrogen diffusivity and permeability decrease, while the subsurface hydrogen concentration and hydrogen trapping density increase remarkably. Plastic deformation favors the hydrogen permeation and trapping at weld, especially the HAZ, to elevate the susceptibility to hydrogen damage. The hydrogen distribution at different welding zones can be evaluated and determined by a developed modeling method.  相似文献   

19.
The focus of this study is to analyze hydrogen embrittlement susceptibility of a modified AISI 4130 steel by means of incremental step loading tests. Three different microstructures with a hardness of 40 HRC were analyzed: martensite with large and small prior austenite grains and dual-phase (martensite/ferrite). According to the results, the dual-phase microstructure presented the lowest hydrogen embrittlement susceptibility and martensite with large prior austenite grains, the highest. This behavior was attributed to the lower fraction of high-angle boundaries presented by the martensite with large prior austenite grains, which led to a higher diffusible hydrogen content. Moreover, the ferrite local deformation in the dual-phase microstructure enhanced its hydrogen embrittlement resistance by lowering the stress concentration. A synergic effect of decohesion and localized plasticity was identified on the hydrogen induced fracture of the tested microstructures leading to an intergranular + quasi-cleavage fracture in the martensite and quasi-cleavage in the dual-phase microstructure.  相似文献   

20.
This study aims to investigate the mechanical properties of X70 pipeline steel under the synergistic influence of hydrogen and stress concentration. Slow strain rate tensile tests and low-cycle fatigue tests were performed on the specimens with different stress concentration factors (Kt) in 10 MPa nitrogen/hydrogen mixtures. Results show that the degradation degree of the ductility and fatigue life of X70 steel induced by hydrogen increases with the increase of Kt, and as the hydrogen partial pressure in mixtures increases, the influence of Kt on hydrogen-induced degradation increases as well. In addition, finite element analysis was performed via a modified hydrogen diffusion/plasticity coupled model to study the effect of Kt on hydrogen distribution in the specimens, which can influence the mechanical properties of X70. The maximum hydrogen concentration consistently appears at the notch tip of the specimen and increases with the increase of Kt, which is proposed to be one of the reasons for the severe hydrogen embrittlement of the specimens with large Kt. As the axial tensile force on the specimen increases, the maximum hydrogen concentration at the notch tip begins to be dominated by hydrogen in the normal interstitial lattice sites and, subsequently, in the trapping sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号