首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of the sustainability concept to environmental projects implies that at least three feature categories (i.e., economic, social, and environmental) must be taken into account by applying a participative multi-criterion analysis (MCA). However, MCA results depend crucially on the methodology applied to estimate the relative criterion weights. By using a logically consistent set of data and methods (i.e., linear regression [LR], factor analysis [FA], the revised Simos procedure [RSP], and the analytical hierarchy process [AHP]), the present study revealed that mistakes from using one weight-estimation method rather than an alternative are non-significant in terms of satisfaction of specified acceptable standards (i.e., a risk of up to 1% of erroneously rejecting an option), but significant for comparisons between options (i.e., a risk of up to 11% of choosing a worse option by rejecting a better option). In particular, the risks of these mistakes are larger if both differences in statistical or computational algorithms and in data sets are involved (e.g., LR vs. AHP). In addition, the present study revealed that the choice of weight-estimation methods should depend on the estimated and normalised score differences for the economic, social, and environmental features. However, on average, some pairs of weight-estimation methods are more similar (e.g., AHP vs. RSP and LR vs. AHP are the most and the least similar, respectively), and some single weight-estimation methods are more reliable (i.e., FA > RSP > AHP > LR).  相似文献   

2.
Open learning environments, such as Massive Open Online Courses (MOOCs), often lack adequate learner collaboration opportunities; they are also plagued by high levels of drop-out. Introducing project-based learning (PBL) can enhance learner collaboration and motivation, but PBL does not easily scale up into MOOCS. To support definition and staffing of projects, team formation principles and algorithms are introduced to form productive, creative, or learning teams. These use data on the project and on learner knowledge, personality and preferences. A study was carried out to validate the principles and the algorithms. Students (n = 168) and educational practitioners (n = 56) provided the data. The principles for learning teams and productive teams were accepted, while the principle for creative teams could not. The algorithms were validated using team classifying tasks and team ranking tasks. The practitioners classify and rank small productive, creative and learning teams in accordance with the algorithms, thereby validating the algorithms outcomes. When team size grows, for practitioners, forming teams quickly becomes complex, as demonstrated by the increased divergence in ranking and classifying accuracy. Discussion of the results, conclusions, and directions for future research are provided.  相似文献   

3.
Early forecasting of project dispute resolutions (PDRs) provides decision-support information for resolving potential procurement problems before a dispute occurs. This study compares the performances of classification and ensemble models for predicting dispute handling methods in public–private partnership (PPP) projects. Model analyses use machine learners (i.e., Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), and Tree-augmented Naïve (TAN) Bayesian), classification and regression-based techniques (i.e., Classification and Regression Tree (CART), Quick, Unbiased and Efficient Statistical Tree (QUEST), Exhaustive Chi-squared Automatic Interaction Detection (Exhaustive CHAID), and C5.0), and combinations of these techniques that performed best for a set of PPP data. Analytical results exhibit that the combined technique of QUEST + CHAID + C5.0 has the best classification accuracy at 84.65% in predicting dispute resolution outcomes (i.e., mediation, arbitration, litigation, negotiation, administrative appeals or no dispute occurred). Moreover, as the dispute category and phase in which the dispute occurs are known during project execution, the best classification model is the CART model, with an accuracy of 69.05%. This study demonstrates effective classification application for early PDR prediction related to public infrastructure projects.  相似文献   

4.
Multi-temporal C-band SAR data (C-HH and C-VV), collected by ERS-2 and ENVISAT satellite systems, are compared with field observations of hydrology (i.e., inundation and soil moisture) and National Wetland Inventory maps (U.S. Fish and Wildlife Service) of a large forested wetland complex adjacent to the Patuxent and Middle Patuxent Rivers, tributaries of the Chesapeake Bay. Multi-temporal C-band SAR data were shown to be capable of mapping forested wetlands and monitoring hydroperiod (i.e., temporal fluctuations in inundation and soil moisture) at the study site, and the discrimination of wetland from upland was improved with 10 m digital elevation data. Principal component analysis was used to summarize the multi-temporal SAR data sets and to isolate the dominant temporal trend in inundation and soil moisture (i.e., relative hydroperiod). Significant positive, linear correlations were found between the first principal component and percent area flooded and soil moisture. The correlation (r2) between the first principal component (PC1) of multi-temporal C-HH SAR data and average soil moisture was 0.88 (p = < .0001) during the leaf-off season and 0.87 (p = < .0001) during the leaf-on season, while the correlation between PC1 and average percent area inundated was 0.82 (p = < .0001) and 0.47 (p = .0016) during the leaf-off and leaf-on seasons, respectively. When compared to field data, the SAR forested wetland maps identified areas that were flooded for 25% of the time with 63–96% agreement and areas flooded for 5% of the time with 44–89% agreement, depending on polarization and time of year. The results are encouraging and justify further studies to attempt to quantify the relative SAR-derived hydroperiod classes in terms of physical variables and also to test the application of SAR data to more diverse landscapes at a broader scale. The present evidence suggests that the SAR data will significantly improve routine wooded wetland mapping.  相似文献   

5.
PurposeTo compare the diagnostic performances of artificial neural networks (ANNs) and multivariable logistic regression (LR) analyses for differentiating between malignant and benign lung nodules on computed tomography (CT) scans.MethodsThis study evaluated 135 malignant nodules and 65 benign nodules. For each nodule, morphologic features (size, margins, contour, internal characteristics) on CT images and the patient’s age, sex and history of bloody sputum were recorded. Based on 200 bootstrap samples generated from the initial dataset, 200 pairs of ANN and LR models were built and tested. The area under the receiver operating characteristic (ROC) curve, Hosmer–Lemeshow statistic and overall accuracy rate were used for the performance comparison.ResultsANNs had a higher discriminative performance than LR models (area under the ROC curve: 0.955 ± 0.015 (mean ± standard error) and 0.929 ± 0.017, respectively, p < 0.05). The overall accuracy rate for ANNs (90.0 ± 2.0%) was greater than that for LR models (86.9 ± 1.6%, p < 0.05). The Hosmer–Lemeshow statistic for the ANNs was 8.76 ± 6.59 vs. 6.62 ± 4.03 (p > 0.05) for the LR models.ConclusionsWhen used to differentiate between malignant and benign lung nodules on CT scans based on both objective and subjective features, ANNs outperformed LR models in both discrimination and clinical usefulness, but did not outperform for the calibration.  相似文献   

6.
ObjectiveThe purpose of this study was to assess associations between depression and problematic internet use (PIU) among female college students, and determine whether Internet use time moderates this relationship.MethodThis cross-sectional survey included 265 female college students from four U.S. universities. Students completed the Patient Health Questionnaire-9 (PHQ-9), the Problematic and Risky Internet Use Screening Scale (PRIUSS) and self-reported daily Internet use. Analyses included multivariate analysis of variance and Poisson regression.ResultsParticipants reported mean age of 20.2 years (SD = 1.7) and were 84.9% Caucasian. The mean PHQ-9 score was 5.4 (SD = 4.6); the mean PRIUSS score was 16.4 (SD = 11.1). Participants’ risk for PIU increased by 27% with each additional 30 min spent online using a computer (RR = 1.27, 95% CI: 1.14–1.42, p < .0001). Risk for PIU was significantly increased among those who met criteria for severe depression (RR = 8.16 95% CI: 4.27–15.6, p < .0001). The PHQ-9 items describing trouble concentrating, psychomotor dysregulation and suicidal ideation were most strongly associated with PIU risk.ConclusionsThe positive relationship between depression and PIU among female college students supports screening for both conditions, particularly among students reporting particular depression symptoms.  相似文献   

7.
This study consists of two cases: (i) The experimental analysis: Shot peening is a method to improve the resistance of metal pieces to fatigue by creating regions of residual stress. In this study, the residual stresses induced in steel specimen type C-1020 by applying various strengths of shot peening, are investigated using the electrochemical layer removal method. The best result is obtained using 0.26 mm A peening strength and the stress encountered in the shot peened material is ?276 MPa, while the maximum residual stress obtained is ?363 MPa at a peening strength of 0.43 mm A. (ii) The mathematical modelling analysis: The use of ANN has been proposed to determine the residual stresses based on various strengths of shot peening using results of experimental analysis. The back-propagation learning algorithm with two different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. The best fitting training data set was obtained with four neurons in the hidden layer, which made it possible to predict residual stress with accuracy at least as good as that of the experimental error, over the whole experimental range. After training, it was found the R2 values are 0.996112 and 0.99896 for annealed before peening and shot peened only, respectively. Similarly, these values for testing data are 0.995858 and 0.999143, respectively. As seen from the results of mathematical modelling, the calculated residual stresses are obviously within acceptable uncertainties.  相似文献   

8.
ContextPredicting a number of defects to be resolved in large software projects (defect backlog) usually requires complex statistical methods and thus is hard to use on a daily basis by practitioners in industry. Making predictions in simpler and more robust way is often required by practitioners in software engineering industry.ObjectiveThe objective of this paper is to present a simple and reliable method for forecasting the level of defect backlog in large, lean-based software development projects.MethodThe new method was created as part of an action research project conducted at Ericsson. In order to create the method we have evaluated multivariate linear regression, expert estimations and analogy-based predictions w.r.t. their accuracy and ease-of-use in industry. We have also evaluated the new method in a life project at one of the units of Ericsson during a period of 21 weeks (from the beginning of the project until the release of the product).ResultsThe method for forecasting the level of defect backlog uses an indicator of the trend (an arrow) as a basis to forecast the level of defect backlog. Forecasts are based on moving average which combined with the current level of defect backlog was found to be the best prediction method (Mean Magnitude of Relative Error of 16%) for the level of future defect backlog.ConclusionWe have found that ease-of-use and accuracy are the main aspects for practitioners who use predictions in their work. In this paper it is concluded that using the simple moving average provides a sufficiently-good accuracy (much appreciated by practitioners involved in the study). We also conclude that using the indicator (forecasting the trend) instead of the absolute number of defects in the backlog increases the confidence in our method compared to our previous attempts (regression, analogy-based, and expert estimates).  相似文献   

9.
Leaf area index (LAI) is a key forest structural characteristic that serves as a primary control for exchanges of mass and energy within a vegetated ecosystem. Most previous attempts to estimate LAI from remotely sensed data have relied on empirical relationships between field-measured observations and various spectral vegetation indices (SVIs) derived from optical imagery or the inversion of canopy radiative transfer models. However, as biomass within an ecosystem increases, accurate LAI estimates are difficult to quantify. Here we use lidar data in conjunction with SPOT5-derived spectral vegetation indices (SVIs) to examine the extent to which integration of both lidar and spectral datasets can estimate specific LAI quantities over a broad range of conifer forest stands in the northern Rocky Mountains. Our results show that SPOT5-derived SVIs performed poorly across our study areas, explaining less than 50% of variation in observed LAI, while lidar-only models account for a significant amount of variation across the two study areas located in northern Idaho; the St. Joe Woodlands (R2 = 0.86; RMSE = 0.76) and the Nez Perce Reservation (R2 = 0.69; RMSE = 0.61). Further, we found that LAI models derived from lidar metrics were only incrementally improved with the inclusion of SPOT 5-derived SVIs; increases in R2 ranged from 0.02–0.04, though model RMSE values decreased for most models (0–11.76% decrease). Significant lidar-only models tended to utilize a common set of predictor variables such as canopy percentile heights and percentile height differences, percent canopy cover metrics, and covariates that described lidar height distributional parameters. All integrated lidar-SPOT 5 models included textural measures of the visible wavelengths (e.g. green and red reflectance). Due to the limited amount of LAI model improvement when adding SPOT 5 metrics to lidar data, we conclude that lidar data alone can provide superior estimates of LAI for our study areas.  相似文献   

10.
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ~ 350 W m? 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m? 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m? 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m? 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ~ 5 W m? 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.  相似文献   

11.
The self-shadowing of conifer canopies results from the size and arrangement of trees within a stand and is a first-order term controlling radiance from forested terrain at common pixel scales of tens of meters. Although self-shadowing is a useful attribute for forest remote-sensing classification, compensation for the topographic effects of self-shadowing has proven problematic. This study used airborne canopy LiDAR measurements of 80 Pacific Northwest, USA conifer stands ranging in development stage from pre-canopy closure to old-growth in order to model canopy self-shadowing for four solar zenith angles (SZA). The shadow data were compared to physical measurements used to characterize forest stands, and were also used to test and improve terrain compensation models for remotely sensed images of forested terrain. Canopy self-shadowing on flat terrain strongly correlates with the canopy's geometric complexity as measured by the rumple index (canopy surface area/ground surface area) (R2 = 0.94–0.87 depending on SZA), but is less correlated with other stand measurements: 95th percentile canopy height (R2 = 0.68), mean diameter at breast height (dbh) (R2 = 0.65), basal area ha? 1 (R2 = 0.18), and canopy stem count ha? 1 (R2 = 0.18). The results in this paper support interpretation of self-shadowing as a function of canopy complexity, which is an important ecological characteristic in its own right. Modeling of canopy self-shadowing was used to assess the accuracy of the Sun-Canopy-Sensor (SCS) topographic correction, and to develop a new empirical Adaptive Shade Compensation (ASC) topographic compensation model. ASC used measured shadow (as an estimate of canopy complexity) and the SCS term (to describe the illumination geometry) as independent variables in multiple regressions to determine the topographic correction. The ASC model provided more accurate radiance corrections with limited variation in results across the full range of canopy complexities and incidence angles.  相似文献   

12.
BackgroundSource code size in terms of SLOC (source lines of code) is the input of many parametric software effort estimation models. However, it is unavailable at the early phase of software development.ObjectiveWe investigate the accuracy of early SLOC estimation approaches for an object-oriented system using the information collected from its UML class diagram available at the early software development phase.MethodWe use different modeling techniques to build the prediction models for investigating the accuracy of six types of metrics to estimate SLOC. The used techniques include linear models, non-linear models, rule/tree-based models, and instance-based models. The investigated metrics are class diagram metrics, predictive object points, object-oriented project size metric, fast&&serious class points, objective class points, and object-oriented function points.ResultsBased on 100 open-source Java systems, we find that the prediction model built using object-oriented project size metric and ordinary least square regression with a logarithmic transformation achieves the highest accuracy (mean MMRE = 0.19 and mean Pred(25) = 0.74).ConclusionWe should use object-oriented project size metric and ordinary least square regression with a logarithmic transformation to build a simple, accurate, and comprehensible SLOC estimation model.  相似文献   

13.
《Applied ergonomics》2011,42(1):138-145
IntroductionSubjective workload measures are usually administered in a visual–manual format, either electronically or by paper and pencil. However, vocal responses to spoken queries may sometimes be preferable, for example when experimental manipulations require continuous manual responding or when participants have certain sensory/motor impairments. In the present study, we evaluated the acceptability of the hands-free administration of two subjective workload questionnaires – the NASA Task Load Index (NASA-TLX) and the Multiple Resources Questionnaire (MRQ) – in a surgical training environment where manual responding is often constrained.MethodSixty-four undergraduates performed fifteen 90-s trials of laparoscopic training tasks (five replications of 3 tasks – cannulation, ring transfer, and rope manipulation). Half of the participants provided workload ratings using a traditional paper-and-pencil version of the NASA-TLX and MRQ; the remainder used a vocal (hands-free) version of the questionnaires. A follow-up experiment extended the evaluation of the hands-free version to actual medical students in a Minimally Invasive Surgery (MIS) training facility.ResultsThe NASA-TLX was scored in 2 ways – (1) the traditional procedure using participant-specific weights to combine its 6 subscales, and (2) a simplified procedure – the NASA Raw Task Load Index (NASA-RTLX) – using the unweighted mean of the subscale scores. Comparison of the scores obtained from the hands-free and written administration conditions yielded coefficients of equivalence of r = 0.85 (NASA-TLX) and r = 0.81 (NASA-RTLX). Equivalence estimates for the individual subscales ranged from r = 0.78 (“mental demand”) to r = 0.31 (“effort”). Both administration formats and scoring methods were equally sensitive to task and repetition effects. For the MRQ, the coefficient of equivalence for the hands-free and written versions was r = 0.96 when tested on undergraduates. However, the sensitivity of the hands-free MRQ to task demands (ηpartial2 = 0.138) was substantially less than that for the written version (ηpartial2 = 0.252). This potential shortcoming of the hands-free MRQ did not seem to generalize to medical students who showed robust task effects when using the hands-free MRQ (ηpartial2 = 0.396). A detailed analysis of the MRQ subscales also revealed differences that may be attributable to a “spillover” effect in which participants’ judgments about the demands of completing the questionnaires contaminated their judgments about the primary surgical training tasks.ConclusionVocal versions of the NASA-TLX are acceptable alternatives to standard written formats when researchers wish to obtain global workload estimates. However, care should be used when interpreting the individual subscales if the object is to make comparisons between studies or conditions that use different administration modalities. For the MRQ, the vocal version was less sensitive to experimental manipulations than its written counterpart; however, when medical students rather than undergraduates used the vocal version, the instrument’s sensitivity increased well beyond that obtained with any other combination of administration modality and instrument in this study. Thus, the vocal version of the MRQ may be an acceptable workload assessment technique for selected populations, and it may even be a suitable substitute for the NASA-TLX.  相似文献   

14.
15.
The properties of PZN–PT and PMN–PT single crystals of varying compositions and orientations have been investigated. Among the various compositions studied, [0 0 1]-optimally poled PZN-(6–7)%PT and PMN-30%PT exhibit superior dielectric and piezoelectric properties, with KT  6800–8000, d33  2800 pC/N, d31  −(1200–1800) pC/N for PZN-(6–7)%PT; and KT = 7500–9000, d33 = 2200–2500 pC/N and d31 = −(1100–1400) pC/N for PMN-30%PT. These two compositions are also fairly resistant to over-poling. The [0 0 1]-poled electromechanical coupling factors (k33, k31 and kt) are relatively insensitive to crystal composition. [0 1 1]-optimally poled PZN-7%PT single crystal also exhibits extremely high d31 values of up to −4000 pC/N with k31  0.90–0.96. While [0 1 1]-poled PZN-7%PT single crystal becomes over-poled with much degraded properties when poled at and above 0.6 kV/mm, PZN-6%PT crystal shows no signs of over-poling even when poled to 2.0 kV/mm. The presence of a certain amount (i.e., 10–15%) of orthorhombic phase in a rhombohedral matrix has been found to be responsible for the superior transverse piezoelectric properties of [0 1 1]-optimally poled PZN-(6–7)%PT. The present work shows that flux-grown PZN–PT crystals exhibit superior and consistent properties and improved over-poling resistance to flux-grown PMN–PT crystals and that, for or a given crystal composition, flux-grown PMN–PT crystals exhibit superior over-poling resistance to their melt-grown counterparts.  相似文献   

16.
Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of such disturbances requires knowledge of host species distribution patterns on the landscape. In this study, we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura fumiferana) to facilitate landscape scale planning and modeling of outbreak dynamics. We used multi-temporal, multi-seasonal Landsat data and 128 ground truth plots (and 120 additional validation plots) to map basal area (BA), for 6.4 million hectares of forest in northern Minnesota and neighboring Ontario. Partial least-squares (PLS) regression was used to determine relationships between ground data and Landsat sensor data. Subsequently, BA was mapped for all forests, as well as for two specific host tree genera (Picea and Abies). These PLS regression analyses yielded estimates for overall forest BA with an R2 of 0.62 and RMSE of 4.67 m2 ha? 1 (20% of measured BA), white spruce relative BA with an R2 of 0.88 (RMSE = 12.57 m2 ha? 1 [20% of measured]), and balsam fir relative BA with an R2 of 0.64 (RMSE = 6.08 m2 ha? 1 [33% of measured]). We also used this method to estimate the relative BA of deciduous and coniferous species, each with R2 values of 0.86 and RMSE values of 9.89 m2 ha? 1 (23% of measured) and 9.78 m2 ha? 1 (16% of measured), respectively. Of note, winter imagery (with snow cover) and shortwave infrared-based indices – especially the shortwave infrared/visible ratio – strengthened the models we developed. Because ground measurements were made largely in forest stands containing spruce and fir, modeled results are not applicable to stands dominated by non-target conifers such as pines and cedar. PLS regression has proven to be an effective modeling tool for regional characterization of forest structure within spatially heterogeneous forests using multi-temporal Landsat sensor data.  相似文献   

17.
Self-association (i.e. interchain aggregation) behavior of atactic poly(ethacrylic acid) PEA in dilute aqueous solution as function of degree-of-neutralization by Na+ counter-ions (i.e. charge fraction f) was investigated by molecular dynamics simulations. Aggregation is found to occur in the range 0  f ≤0.7 in agreement with experimental results compared at specified polymer concentration Cp = 0.36 mol/l in dilute solution. The macromolecular solution was characterized and analysed for radius-of-gyration, torsion angle distribution, inter and intra-molecular hydrogen bonds, radial distribution functions of intermolecular and inter-atomic pairs, inter-chain contacts and solvation enthalpy. The PEA chains form aggregate through attractive inter-chain interaction via hydrogen bonding, in the range f < 0.7, in agreement with experimental observation. The numbers of inter-chain contacts decreases with f. A critical structural transition occurs at f = 0.7, observed via simulations for the first time, in Rg as well as inter-chain H-bonds. The inter-chain distance increases with f due to repulsive interactions between COO− groups on the chains. PEA-PEA electrostatic interactions dominant solvation enthalpy. The PEA solvation enthalpy becomes increasingly favorable with increase in f. The transition enthalpy change, in going from uncharged (acid) state to fully charged state (f = 1) is unfavorable towards aggregate formation.  相似文献   

18.
Impaired water quality caused by human activity and the spread of invasive plant and animal species has been identified as a major factor of degradation of coastal ecosystems in the tropics. The main goal of this study was to evaluate the performance of AnnAGNPS (Annualized Non-Point Source Pollution Model), in simulating runoff and soil erosion in a 48 km2 watershed located on the Island of Kauai, Hawaii. The model was calibrated and validated using 2 years of observed stream flow and sediment load data. Alternative scenarios of spatial rainfall distribution and canopy interception were evaluated. Monthly runoff volumes predicted by AnnAGNPS compared well with the measured data (R2 = 0.90, P < 0.05); however, up to 60% difference between the actual and simulated runoff were observed during the driest months (May and July). Prediction of daily runoff was less accurate (R2 = 0.55, P < 0.05). Predicted and observed sediment yield on a daily basis was poorly correlated (R2 = 0.5, P < 0.05). For the events of small magnitude, the model generally overestimated sediment yield, while the opposite was true for larger events. Total monthly sediment yield varied within 50% of the observed values, except for May 2004. Among the input parameters the model was most sensitive to the values of ground residue cover and canopy cover. It was found that approximately one third of the watershed area had low sediment yield (0–1 t ha−1 y−1), and presented limited erosion threat. However, 5% of the area had sediment yields in excess of 5 t ha−1 y−1. Overall, the model performed reasonably well, and it can be used as a management tool on tropical watersheds to estimate and compare sediment loads, and identify “hot spots” on the landscape.  相似文献   

19.
The construction of symmetric and symplectic exponentially fitted modified Runge–Kutta–Nyström (SSEFRKN) methods is considered. Based on the symmetry, symplecticity, and exponentially fitted conditions, new explicit modified RKN integrators with FSAL property are obtained. The new integrators integrate exactly differential systems whose solutions can be expressed as linear combinations of functions from the set { exp(± iωt)}, ω > 0, i2 = −1, or equivalently from the set { cos(ωt), sin(ωt)}. The phase properties of the new integrators are examined and their periodicity regions are obtained. Numerical experiments are accompanied to show the high efficiency and competence of the new SSEFRKN methods compared with some highly efficient nonsymmetric symplecti EFRKN methods in the literature.  相似文献   

20.
Tetrazino-tetrazine-tetraoxide (TTTO) is an attractive high energy compound, but unfortunately, it is not yet experimentally synthesized so far. Isomerization of TTTO leads to its five isomers, bond-separation energies were empolyed to compare the global stability of six compounds, it is found that isomer 1 has the highest bond-separation energy (1204.6 kJ/mol), compared with TTTO (1151.2 kJ/mol); thermodynamic properties of six compounds were theoretically calculated, including standard formation enthalpies (solid and gaseous), standard fusion enthalpies, standard vaporation enthalpies, standard sublimation enthalpies, lattice energies and normal melting points, normal boiling points; their detonation performances were also computed, including detonation heat (Q, cal/g), detonation velocity (D, km/s), detonation pressure (P, GPa) and impact sensitivity (h50, cm), compared with TTTO (Q = 1311.01 J/g, D = 9.228 km/s, P = 40.556 GPa, h50 = 12.7 cm), isomer 5 exhibites better detonation performances (Q = 1523.74 J/g, D = 9.389 km/s, P = 41.329 GPa, h50 =  28.4 cm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号