首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
In this paper, a controlled stochastic delay heat equation with Neumann boundary-noise and boundary-control is considered. The existence and uniqueness of the mild solution for the associated Hamilton–Jacobi–Bellman equations are obtained by means of the backward stochastic differential equations, which is applied to the optimal control problem.  相似文献   

2.
In this article, we consider an optimal control problem in which the controlled state dynamics is governed by a stochastic evolution equation in Hilbert spaces and the cost functional has a quadratic growth. The existence and uniqueness of the optimal control are obtained by the means of an associated backward stochastic differential equations with a quadratic growth and an unbounded terminal value. As an application, an optimal control of stochastic partial differential equations with dynamical boundary conditions is also given to illustrate our results.  相似文献   

3.
We consider the optimal control for a Banach space valued stochastic delay evolution equation. The existence and uniqueness of the mild solution for the associated Hamilton–Jacobi–Bellman equations are obtained by means of backward stochastic differential equations. An application to optimal control of stochastic delay partial differential equations is also given.  相似文献   

4.
本文提出了不确定拟哈密顿系统、基于随机平均法、随机极大值原理和随机微分对策理论的一种随机极大极小最优控制策略.首先,运用拟哈密顿系统的随机平均法,将系统状态从速度和位移的快变量形式转化为能量的慢变量形式,得到部分平均的It随机微分方程;其次,给定控制性能指标,对于不确定拟哈密顿系统的随机最优控制,根据随机微分对策理论,将其转化为一个极小极大控制问题;再根据随机极大值原理,建立关于系统与伴随过程的前向-后向随机微分方程,随机最优控制表达为哈密顿控制函数的极大极小条件,由此得到最坏情形下的扰动参数与极大极小最优控制;然后,将最坏扰动参数与最优控制代入部分平均的It随机微分方程并完成平均,求解与完全平均的It随机微分方程相应的Fokker-Planck-Kolmogorov(FPK)方程,可得受控系统的响应量并计算控制效果;最后,将上述不确定拟哈密顿系统的随机最优控制策略应用于一个两自由度非线性系统,通过数值结果说明该随机极大极小控制策略的控制效果.  相似文献   

5.
In this paper we study the optimal stochastic control problem for stochastic differential equations on Riemannian manifolds. The cost functional is specified by controlled backward stochastic differential equations in Euclidean space. Under some suitable assumptions, we conclude that the value function is the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation which is a fully nonlinear parabolic partial differential equation on Riemannian manifolds.  相似文献   

6.
以随机分析的知识和最优控制理论为基础,推广了一类带停时的奇异型随机控制中的折扣费用模型,主要在受控状态过程中增加了漂移因子和扩散因子,使其为一随机微分方程的解,并将费用函数一般化.通过求解一组变分方程,证明了最优控制及最优停时的存在性,并给出了最优费用函数的解析表达式.  相似文献   

7.
《国际计算机数学杂志》2012,89(18):2603-2621
We prove convergence of the stochastic exponential time differencing scheme for parabolic stochastic partial differential equations (SPDEs) with one-dimensional multiplicative noise. We examine convergence for fourth-order SPDEs and consider as an example the Swift–Hohenberg equation. After examining convergence, we present preliminary evidence of a shift in the deterministic pinning region [J. Burke and E. Knobloch, Localized states in the generalized Swift–Hohenberg equation, Phys. Rev. E. 73 (2006), pp. 056211-1–15; J. Burke and E. Knobloch, Snakes and ladders: Localized states in the Swift–Hohenberg equation, Phys. Lett. A 360 (2007), pp. 681–688; Y.-P. Ma, J. Burke, and E. Knobloch, Snaking of radial solutions of the multi-dimensional Swift–Hohenberg equation: A numerical study, Physica D 239 (2010), pp. 1867–1883; S. McCalla and B. Sandstede, Snaking of radial solutions of the multi-dimensional Swift–Hohenberg equation: A numerical study, Physica D 239 (2010), pp. 1581–1592] with space–time white noise.  相似文献   

8.
Recently, international academic circles advanced a class of new stochastic control models of a geometric Brownian motion which is an important kind of impulse control models whose cost structure is different from the others before, and it has a broad applying background and important theoretical significance in financial control and management of investment. This paper generalizes substantially the above stochastic control models under quite extensive conditions and describes the models more exactly under more normal theoretical system of stochastic process. By establishing a set of proper variational equations and proving the existence of its solution, and applying the means of stochastic analysis, this paper proves that the generalized stochastic control models have optimal controls. Meanwhile, we also analyze the structure of optimal controls carefully. Besides, we study the solution function of variational equations in a relatively deep-going way, which constitutes the value function of control models to some extent. Because the analysis methods of this paper are greatly different from those of original reference, this paper possesses considerable originality to some extent. In addition, this paper gives the strict proof to the part of original reference which is not fairly well-knit in analyses, and makes analyses and discussions of the model have the exactitude of mathematical sense. Supported by the National Natural Science Foundation of China (Grant No. 19671004)  相似文献   

9.
This paper focuses on a general model of a controlled stochastic differential equation with mixed delay in the state variable. Based on the Itô formula, stochastic analysis, convex analysis, and inequality technique, we obtain a semi‐coupled forward‐backward stochastic differential equation with mixed delay and mixed initial‐terminal conditions and prove that such forward‐backward system admits a unique adapted solution. The verification theorem for an optimal control of a system with mixed delay is established. The obtained results generalize and improve some recent results, and they are more easily verified and applied in practice. As an application, we conclude with finding explicitly the optimal consumption rate from the wealth process of a person given by a stochastic differential equation with mixed delay which fit into our general model.  相似文献   

10.
This paper is concerned with the existence and uniqueness of solution for the optimal control problem governed by the stochastic FitzHugh–Nagumo equation driven by a Gaussian noise. First-order conditions of optimality are also obtained.  相似文献   

11.
研究了一类带Poisson跳扩散过程的线性二次随机微分博弈,包括非零和博弈的Nash均衡策略与零和博弈的鞍点均衡策略问题.利用微分博弈的最大值原理,得到Nash均衡策略的存在条件等价于两个交叉耦合的矩阵Riccati方程存在解,鞍点均衡策略的存在条件等价于一个矩阵Riccati方程存在解的结论,并给出了均衡策略的显式表达及最优性能泛函值.最后,将所得结果应用于现代鲁棒控制中的随机H2/H控制与随机H控制问题,得到了鲁棒控制策略的存在条件及显式表达,并验证所得结果在金融市场投资组合优化问题中的应用.  相似文献   

12.
The aim of the present paper is to provide necessary and sufficient conditions to maintain a stochastic coupled system with porous media components and gradient-type noise in a prescribed set of constraints by using internal controls. This work is a complementary contribution to the results obtained by the same authors, also on the viability problem associated to the porous media equation, but with Lipschitz noise. Second, the present paper provides a different framework in which the quasi-tangency condition can be obtained with optimal speed. In comparison with the aforementioned result, and from a technical point of view, here, we transform the stochastic system into a random-PDE one, via the rescaling approach, and then we study the viability of random sets. As an application, (stronger) conditions for the stabilization of the stochastic porous media equations are obtained. These are illustrated on a simple example.  相似文献   

13.
In this paper, we consider the numerical approximation of a general second order semilinear stochastic spartial differential equation (SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part also called stochastic reactive dominated transport equations. Most numerical techniques, including current stochastic exponential integrators lose their good stability properties on such equations. Using finite element for space discretization, we propose a new scheme appropriated on such equations, called stochastic exponential Rosenbrock scheme based on local linearization at every time step of the semi-discrete equation obtained after space discretization. We consider noise with finite trace and give a strong convergence proof of the new scheme toward the exact solution in the root-mean-square \(L^2\) norm. Numerical experiments to sustain theoretical results are provided.  相似文献   

14.
ABSTRACT

In this paper, we introduce a new class of backward doubly stochastic differential equations (in short BDSDE) called mean-field backward doubly stochastic differential equations (in short MFBDSDE) driven by Itô-Lévy processes and study the partial information optimal control problems for backward doubly stochastic systems driven by Itô-Lévy processes of mean-field type, in which the coefficients depend on not only the solution processes but also their expected values. First, using the method of contraction mapping, we prove the existence and uniqueness of the solutions to this kind of MFBDSDE. Then, by the method of convex variation and duality technique, we establish a sufficient and necessary stochastic maximum principle for the stochastic system. Finally, we illustrate our theoretical results by an application to a stochastic linear quadratic optimal control problem of a mean-field backward doubly stochastic system driven by Itô-Lévy processes.  相似文献   

15.
Almost nothing decisive has been said about collocation methods for solving SPDEs. Among the best of such SPDEs the Burgers equation shows a prototypical model for describing the interaction between the reaction mechanism, convection effect, and diffusion transport. This paper discusses spectral collocation method to reduce stochastic Burgers equation to a system of stochastic ordinary differential equations (SODEs). The resulting SODEs system is then solved by an explicit 3-stage stochastic Runge-Kutta method of strong order one. The convergence rate of Fourier collocation method for Burgers equation is also obtained. Some numerical experiments are included to show the performance of the method.  相似文献   

16.
In this paper, we discuss the recursive stochastic H2/H control problem of delay systems with random coefficients involving both continuous and impulse controls. By virtue of a new type of forward backward stochastic differential equations, a necessary and sufficient condition for the existence of a unique solution to the control problem under consideration is derived. The existence and uniqueness of the forward backward stochastic differential equations are also be proved.  相似文献   

17.
We prove the existence of optimal relaxed controls as well as strict optimal controls for systems governed by non linear forward-backward stochastic differential equations (FBSDEs). Our approach is based on weak convergence techniques for the associated FBSDEs in the Jakubowski S-topology and a suitable Skorokhod representation theorem.  相似文献   

18.
In this paper, we consider risk‐sensitive optimal control and differential games for stochastic differential delayed equations driven by Brownian motion. The problems are related to robust stochastic optimization with delay due to the inherent feature of the risk‐sensitive objective functional. For both problems, by using the logarithmic transformation of the associated risk‐neutral problem, the necessary and sufficient conditions for the risk‐sensitive maximum principle are obtained. We show that these conditions are characterized in terms of the variational inequality and the coupled anticipated backward stochastic differential equations (ABSDEs). The coupled ABSDEs consist of the first‐order adjoint equation and an additional scalar ABSDE, where the latter is induced due to the nonsmooth nonlinear transformation of the adjoint process of the associated risk‐neutral problem. For applications, we consider the risk‐sensitive linear‐quadratic control and game problems with delay, and the optimal consumption and production game, for which we obtain explicit optimal solutions.  相似文献   

19.
《国际计算机数学杂志》2012,89(18):2543-2561
In this paper we present the theoretical framework needed to justify the use of a kernel-based collocation method (meshfree approximation method) to estimate the solution of high-dimensional stochastic partial differential equations (SPDEs). Using an implicit time-stepping scheme, we transform stochastic parabolic equations into stochastic elliptic equations. Our main attention is concentrated on the numerical solution of the elliptic equations at each time step. The estimator of the solution of the elliptic equations is given as a linear combination of reproducing kernels derived from the differential and boundary operators of the SPDE centred at collocation points to be chosen by the user. The random expansion coefficients are computed by solving a random system of linear equations. Numerical experiments demonstrate the feasibility of the method.  相似文献   

20.
ABSTRACT

In this paper, we investigate the optimal control problems for delayed doubly stochastic control systems. We first discuss the existence and uniqueness of the delayed doubly stochastic differential equation by martingale representation theorem and contraction mapping principle. As a necessary condition of the optimal control, we deduce a stochastic maximum principle under some assumption. At the same time, a sufficient condition of optimality is obtained by using the duality method. At the end of the paper, we apply our stochastic maximum principle to a class of linear quadratic optimal control problem and obtain the explicit expression of the optimal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号