首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Context-Independent Multilingual Emotion Recognition from Speech Signals   总被引:3,自引:0,他引:3  
This paper presents and discusses an analysis of multilingual emotion recognition from speech with database-specific emotional features. Recognition was performed on English, Slovenian, Spanish, and French InterFace emotional speech databases. The InterFace databases included several neutral speaking styles and six emotions: disgust, surprise, joy, fear, anger and sadness. Speech features for emotion recognition were determined in two steps. In the first step, low-level features were defined and in the second high-level features were calculated from low-level features. Low-level features are composed from pitch, derivative of pitch, energy, derivative of energy, and duration of speech segments. High-level features are statistical presentations of low-level features. Database-specific emotional features were selected from high-level features that contain the most information about emotions in speech. Speaker-dependent and monolingual emotion recognisers were defined, as well as multilingual recognisers. Emotion recognition was performed using artificial neural networks. The achieved recognition accuracy was highest for speaker-dependent emotion recognition, smaller for monolingual emotion recognition and smallest for multilingual recognition. The database-specific emotional features are most convenient for use in multilingual emotion recognition. Among speaker-dependent, monolingual, and multilingual emotion recognition, the difference between emotion recognition with all high-level features and emotion recognition with database-specific emotional features is smallest for multilingual emotion recognition—3.84%.  相似文献   

2.
在跨语料库语音情感识别中,由于目标域和源域样本不匹配,导致情感识别性能很差。为了提高跨语料库语音情感识别性能,本文提出一种基于深度域适应和卷积神经网络(Convolutional neural network, CNN)决策树模型的跨语料库语音情感识别方法。首先构建基于联合约束深度域适应的局部特征迁移学习网络,通过最小化目标域和源域在特征空间和希尔伯特空间的联合差异,挖掘两个语料库之间的相关性,学习从目标域到源域的可迁移不变特征。然后,为了降低跨语料库背景下多种情感间的易混淆情感的分类误差,依据情感混淆度构建CNN决策树多级分类模型,对多种情感先粗分类再细分类。使用CASIA,EMO-DB和RAVDESS三个语料库进行验证。实验结果表明,本文的跨语料库语音情感识别方法比CNN基线方法平均识别率高19.32%~31.08%,系统性能得到很大提升。  相似文献   

3.
域自适应算法被广泛应用于跨库语音情感识别中;然而,许多域自适应算法在追求减小域差异的同时,丧失了目标域样本的鉴别性,导致其以高密度的形式存在于模型决策边界处,降低了模型的性能。基于此,提出一种基于决策边界优化域自适应(DBODA)的跨库语音情感识别方法。首先利用卷积神经网络进行特征处理,随后将特征送入最大化核范数及均值差异(MNMD)模块,在减小域间差异的同时,最大化目标域情感预测概率矩阵的核范数,从而提升目标域样本的鉴别性并优化决策边界。在以Berlin、eNTERFACE和CASIA语音库为基准库设立的六组跨库实验中,所提方法的平均识别精度领先于其他算法1.68~11.01个百分点,说明所提模型有效降低了决策边界的样本密度,提升了预测的准确性。  相似文献   

4.
庄志豪  傅洪亮  陶华伟  杨静  谢跃  赵力 《计算机应用研究》2021,38(11):3279-3282,3348
针对不同语料库之间数据分布差异问题,提出一种基于深度自编码器子域自适应的跨库语音情感识别算法.首先,该算法采用两个深度自编码器分别获取源域和目标域表征性强的低维情感特征;然后,利用基于LMMD(local maximum mean discrepancy)的子域自适应模块,实现源域和目标域在不同低维情感类别空间中的特征分布对齐;最后,使用带标签的源域数据进行有监督地训练该模型.在eNTERFACE库为源域、Berlin库为目标域的跨库识别方案中,所提算法的跨库识别准确率相比于其他算法提升了5.26%~19.73%;在Berlin库为源域、eNTERFACE库为目标域的跨库识别方案中,所提算法的跨库识别准确率相比于其他算法提升了7.34%~8.18%.因此,所提方法可以有效地提取不同语料库的共有情感特征并提升了跨库语音情感识别的性能.  相似文献   

5.
语音情感识别研究进展*   总被引:4,自引:1,他引:4  
首先介绍了语音情感识别系统的组成,重点对情感特征和识别算法的研究现状进行了综述,分析了主要的语音情感特征,阐述了代表性的语音情感识别算法以及混合模型,并对其进行了分析比较。最后,指出了语音情感识别技术的可能发展趋势。  相似文献   

6.
    
Speech emotion recognition plays a crucial role in analyzing psychological disorders, behavioral decision-making, and human-machine interaction applications. However, the majority of current methods for speech emotion recognition heavily rely on data-driven approaches, and the scarcity of emotion speech datasets limits the progress in research and development of emotion analysis and recognition. To address this issue, this study introduces a new English speech dataset specifically designed for emotion analysis and recognition. This dataset consists of 5503 voices from over 60 English speakers in different emotional states. Furthermore, to enhance emotion analysis and recognition, fast Fourier transform (FFT), short-time Fourier transform (STFT), mel-frequency cepstral coefficients (MFCCs), and continuous wavelet transform (CWT) are employed for feature extraction from the speech data. Utilizing these algorithms, the spectrum images of the speeches are obtained, forming four datasets consisting of different speech feature images. Furthermore, to evaluate the dataset, 16 classification models and 19 detection algorithms are selected. The experimental results demonstrate that the majority of classification and detection models achieve exceptionally high recognition accuracy on this dataset, confirming its effectiveness and utility. The dataset proves to be valuable in advancing research and development in the field of emotion recognition.  相似文献   

7.
为了克服语音情感线性参数在刻画不同情感类型特征上的不足,将多重分形理论引入语音情感识别中来,通过分析不同语音情感状态下的多重分形特征,提取多重分形谱参数和广义Hurst指数作为新的语音情感特征参数,并结合传统语音声学特征采用支持向量机(SVM)进行语音情感识别。实验结果表明,通过非线性参数的介入,与仅使用传统语音线性特征的识别方法相比,识别系统的准确率和稳定性得到有效提高,因此为语音情感识别提供了一个新的思路。  相似文献   

8.
本文介绍了语音情感识别领域的最新进展和今后的发展方向,特别是介绍了结合实际应用的实用语音情感识别的研究状况。主要内容包括:对情感计算研究领域的历史进行了回顾,探讨了情感计算的实际应用;对语音情感识别的一般方法进行了总结,包括情感建模、情感数据库的建立、情感特征的提取,以及情感识别算法等;结合具体应用领域的需求,对实用语音情感识别方法进行了重点分析和探讨;分析了实用语音情感识别中面临的困难,针对烦躁等实用情感,总结了实用情感语音语料库的建立、特征分析和实用语音情感建模的方法等。最后,对实用语音情感识别研究的未来发展方向进行了展望,分析了今后可能面临的问题和解决的途径。  相似文献   

9.
为有效利用语音情感词局部特征,提出了一种融合情感词局部特征与语音语句全局特征的语音情感识别方法。该方法依赖于语音情感词典的声学特征库,提取出语音语句中是否包含情感词及情感词密度等局部特征,并与全局声学特征进行融合,再通过机器学习算法建模和识别语音情感。对比实验结果表明,融合语音情感词局部特征与全局特征的语音情感识别方法能取得更好的效果,局部特征的引入能有效提高语音情感识别准确率。  相似文献   

10.
人类的语音情感变化是一个抽象的动态过程,难以使用静态信息对其情感交互进行描述,而人工智能的兴起为语音情感识别的发展带来了新的契机。从语音情感识别的概念和在国内外发展的历史进程入手,分别从5个方面对近些年关于语音情感识别的研究成果进行了归纳总结。介绍了语音情感特征,归纳总结了各种语音特征参数对语音情感识别的意义。分别对语音情感数据库的分类及特点、语音情感识别算法的分类及优缺点、语音情感识别的应用以及语音情感识别现阶段所遇到的挑战进行了详细的阐述。立足于研究现状对语音情感识别的未来研究及其发展进行了展望。  相似文献   

11.
研究了情绪的维度空间模型与语音声学特征之间的关系以及语音情感的自动识别方法。介绍了基本情绪的维度空间模型,提取了唤醒度和效价度对应的情感特征,采用全局统计特征减小文本差异对情感特征的影响。研究了生气、高兴、悲伤和平静等情感状态的识别,使用高斯混合模型进行4种基本情感的建模,通过实验设定了高斯混合模型的最佳混合度,从而较好地拟合了4种情感在特征空间中的概率分布。实验结果显示,选取的语音特征适合于基本情感类别的识别,高斯混合模型对情感的建模起到了较好的效果,并且验证了二维情绪空间中,效价维度上的情感特征对语音情感识别的重要作用。  相似文献   

12.
针对语句之间的情感存在相互关联的特性,本文从声学角度提出了上下文动态情感特征、上下文差分情感特征、上下文边缘动态情感特征和上下文边缘差分情感特征共四类268维语音情感上下文特征以及这四类情感特征的提取方法,该方法是从当前情感语句与其前面若干句的合并句中提取声学特征,建立上下文特征模型,以此辅助传统特征所建模型来提高识别率.最后,将该方法应用于语音情感识别,实验结果表明,加入新的上下文语音情感特征后,六类典型情感的平均识别率为82.78%,比原有特征模型的平均识别率提高了约8.89%.  相似文献   

13.
情感识别依靠分析生理信号、行为特征等分析情感类别,是人工智能重要研究领域之一。为提高情感识别的准确性和实时性,提出基于语音与视频图像的多模态情感识别方法。视频图像模态基于局部二值直方图法(LBPH)+稀疏自动编码器(SAE)+改进卷积神经网络(CNN)实现;语音模态基于改进深度受限波尔兹曼机(DBM)和改进长短时间记忆网络(LSTM)实现;使用SAE获得更多图像的细节特征,用DBM获得声音特征的深层表达;使用反向传播算法(BP)优化DBM和LSTM的非线性映射能力,使用全局均值池化(GAP)提升CNN和LSTM的响应速度并防止过拟合。单模态识别后,两个模态的识别结果基于权值准则在决策层融合,给出所属情感分类及概率。实验结果表明,融合识别策略提升了识别准确率,在中文自然视听情感数据库(cheavd)2.0的测试集达到74.9%的识别率,且可以对使用者的情感进行实时分析。  相似文献   

14.
语音情感识别在人机交互过程中发挥极为重要的作用,近年来备受关注.目前,大多数的语音情感识别方法主要在单一情感数据库上进行训练和测试.然而,在实际应用中训练集和测试集可能来自不同的情感数据库.由于这种不同情感数据库的分布存在巨大差异性,导致大多数的语音情感识别方法取得的跨库识别性能不尽人意.为此,近年来不少研究者开始聚焦跨库语音情感识别方法的研究.本文系统性综述了近年来跨库语音情感识别方法的研究现状与进展,尤其对新发展起来的深度学习技术在跨库语音情感识别中的应用进行了重点分析与归纳.首先,介绍了语音情感识别中常用的情感数据库,然后结合深度学习技术,从监督、无监督和半监督学习角度出发,总结和比较了现有基于手工特征和深度特征的跨库语音情感识别方法的研究进展情况,最后对当前跨库语音情感识别领域存在的挑战和机遇进行了讨论与展望.  相似文献   

15.
本文提出一种基于词格信息的置信度计算方法,估计自适应语音识别结果的可靠性,将不可靠的语音从自适应训练集中去掉,从而减小无监督自适应与有监督自适应间的性能差异,提高无监督自适应的性能。  相似文献   

16.
提出了一种基于数学统计模型化的说话人归一化训练方法,它将与状态相关的直接均值移动归一化训练方法和MAP/WNR模型自适应方法结合到统一的鲁棒性框架中,为模型自适应方法提供了更加合适的初始模型,在提高自适应速度和保持足够的模型平滑度之间得到了较好的平衡,实验表明,该方法可有效的提高有监督模式下语音识别的鲁棒性。  相似文献   

17.
    
  相似文献   

18.
情绪变化问题是说话人识别技术面临的一个难题。为了解决该问题,提出了基于多项式方程拟合的中性-情感模型转换算法。该算法建立了中性模型和情感模型之间的函数关系,只需要说话人的中性语音就能训练其各种情感类型的说话人模型。在普通话情感语音库上的实验表明,采用该方法后识别算法的等错误率由16.06%降低到10.31%,提高了系统性能。  相似文献   

19.
该文讨论了不同非母语条件下的语音识别说话人自适应问题,提出了说话人分类和声学模型合并两种不同的自适应方法,并用实验说明了所提方法的有效性和实用性。  相似文献   

20.
众所周知,训练和测试环境的不同严重影响了语音识别系统的性能。该文提出了一种新的测试环境自适应的方法,它能在测试进行过程中逐步地学得环境特征,而不需要事先获得测试环境的样本数据,从而改变了语音识别系统性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号