首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The ability to adapt to changes in products, processes and technologies is a key competitive factor. Changeable manufacturing paradigms have emerged to address this need, but the industrial implementation remains challenging. In this paper, a participatory design methodology for changeable manufacturing systems is proposed, including requirements specification, selection of appropriate manufacturing paradigm and suitable physical and logical enablers. The methodology supports companies in determining the potential for and mechanisms of transitioning towards changeable manufacturing systems, based on knowledge of products, production, technologies and facilities. The developed methodology is applicable to both new and existing manufacturing systems. It is demonstrated in two industrial cases which highlight its applicability and differences in the appropriate recommended manufacturing systems transition towards changeability as a result of differences in manufacturing characteristics, change requirements and enablers.  相似文献   

3.
Smart manufacturing is the core idea of the fourth industrial evolution. For a smart manufacturing shop floor, real-time monitoring, simulation and prediction of manufacturing operations are vital to improve the production efficiency and flexibility. In this paper, the Cyber-Physical System (CPS) and Digital Twin technologies are introduced to build the interconnection and interoperability of a physical shop floor and corresponding cybershop floor. A Digital Twin-based Cyber-Physical Production System (DT-CPPS) is further established, and the configuring mechanism, operating mechanism and real-time data-driven operations control of DT-CPPS are discussed in detail. It is expected that DT-CPPS will provide the basis for shop floors to march towards smart manufacturing.  相似文献   

4.
One of the important implications of information technology (IT) is that it has made possible widespread automation in manufacturing industry. However, the bulk of this has involved discrete automation of single plant items or process elements rather than the total production system. Although the capital cost of such total system automation is a significant factor in slowing the rate of change in this direction, there are also a number of problem issues related to the integration of machines, computers and human systems within manufacture and design. Arguably the types of issue involved are not fully understood and in many cases the technological change is demanding totally new approaches and responses to the design of production systems and the traditional manufacture/design connections.The paper explores some of the issues raised in advanced manufacturing systems, drawing on case study research into the adoption of flexible manufacturing systems as an example of computer-integrated manufacture. It comments on the experience of case study firms and presents some comments on the design problems facing those responsible for integrated manufacturing systems.  相似文献   

5.
用系统的观点应用和发展先进制造技术   总被引:1,自引:0,他引:1  
对先进制造技术的系统性特点进行了分析 ,认为随着先进制造技术开始发展成为多学科交叉融合一体化的新一代制造科学 ,在应用与发展先进制造技术不能孤立看待某一先进制造技术 ,不应以追求技术的高新为目的 ,必须用全面、整体和系统的观点及手段对其进行处理 ,协调系统内部的各个要素 ,追求总体优化 ,必须重视技术、组织、管理及人的综合 .先进制造技术必须以人为中心 ,其运作需要先进的制造模式相匹配  相似文献   

6.
In modern industry, mass production has migrated to third world countries. To be competitive, European companies are forced to rapidly switch towards manufacturing of short series of customised products with added value. In European industry, a great effort has been made in order to customise products and give them an added value by developing new fabrication technologies. Additive layered manufacturing (ALM), also known as rapid manufacturing (RM), is a powerful tool that offers the necessary competitiveness to European companies. ALM comprises the use of layer-by-layer manufacturing in order to build a part by addition of material. Fabrication is performed directly from the 3D CAD model, which is sliced into layers that are printed one upon the other. Also known as free form fabrication, additive fabrication ‘unlocks’ design potential since part design obeys functionality, pushing the limits of manufacturability. In this paper, the authors review ALM technologies and the state-of-the-art of ALM applications in tooling, biomedicine and lightweight structures for the automotive and aerospace sectors. The authors present their experience in industrial application of additive fabrication through various industrial technology transfer projects made to transfer ALM technology to SMEs. Various case studies are presented and the achieved benefits of ALM are shown.  相似文献   

7.
Automated manufacturing systems commonly employ track-bound work piece transport mechanisms and work piece holders. In the systems considered, the track layout comprises one main loop and multiple side loops, following common industrial practice. As soon as work piece holders simultaneously traverse common tracks on multiple routes, e.g. because the main loop serves as a buffer, such manufacturing systems normally show complex, aperiodic inter-arrival times, which may affect performance. A synchronisation method is presented that limits the number of different inter-arrival times and controls the length of inter-arrival time periods without requiring extensive mathematical modelling. It is applied to a simplified model of a manufacturing system, for which allowable parameter tolerances are derived and validated with simulation. Since these tolerances are very narrow, synchronised operation requires continuous control of inter-arrival times. The applicability of the proposed approach is also demonstrated for a larger eight-station assembly model. Since the presented approach limits the number of system states reached, it helps the system designer anticipate and design against state explosions. The presented method clarifies the complexity—flexibility trade-off between system synchronisation and genuinely de-coupled designs that separate tracks for different routes.  相似文献   

8.
《工程(英文)》2019,5(4):624-636
An intelligent manufacturing system is a composite intelligent system comprising humans, cyber systems, and physical systems with the aim of achieving specific manufacturing goals at an optimized level. This kind of intelligent system is called a human–cyber–physical system (HCPS). In terms of technology, HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing. It can be concluded that the essence of intelligent manufacturing is to design, construct, and apply HCPSs in various cases and at different levels. With advances in information technology, intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing, and is evolving toward new-generation intelligent manufacturing (NGIM). NGIM is characterized by the in-depth integration of new-generation artificial intelligence (AI) technology (i.e., enabling technology) with advanced manufacturing technology (i.e., root technology); it is the core driving force of the new industrial revolution. In this study, the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs, and the implications, characteristics, technical frame, and key technologies of HCPSs for NGIM are then discussed in depth. Finally, an outlook of the major challenges of HCPSs for NGIM is proposed.  相似文献   

9.
Traditionally, flow times distance is used as a surrogate for cost in facility design. However, this performance measure does not fully capture the impact of facility design decisions on operational performance measures such as cycle time and work-in-progress in the system, which are often more meaningful for managers, especially in a manufacturing environment. To better measure operational performance, modelling of material handling systems using a queueing network must be integrated in the facility design process. A number of approaches are discussed in the facility design literature for modelling material flow using queueing networks. In these approaches, Poisson arrival or Markovian job routing assumptions have been used. However, for many manufacturing environments, these assumptions lead to an inaccurate estimation of the material handling system's performance and thus lead to poor facility designs. Incorporating more general queueing results for non-Markovian systems is difficult, however, because the facility design process must investigate a large number of potential solutions and thus the results from the queueing models for the material handling system must be quickly obtained. In this paper, the need for more general queueing models of material handling systems in facility design is confirmed. Then, an approach based on multi-class queueing models is adapted to capture the change in variability of the system performance caused by both different arrangements of workstations in the facility and different arrival processes to the workstations due to the job routing in a computationally efficient manner. The proposed modelling approach is shown to provide more accurate results than previous methods used in facility design based on numerical comparisons with results from discrete-event simulation.  相似文献   

10.
Design for Manufacturing, Assembly, and Disassembly is important in today’s production systems because if this aspect is not considered, it could lead to inefficient operations and excessive material usage, both of which have a significant impact on manufacturing cost and time. Attention to this topic is important in achieving the target standards of Industry 4.0 which is inclusive of material utilisation, manufacturing operations, machine utilisation, features selection of the products, and development of suitable interfaces with information communication technologies (ICT) and other evolving technologies. Design for manufacturing (DFM) and Design for Assembly (DFA) have been around since the 1980’s for rectifying and overcoming the difficulties and waste related to the manufacturing as well as assembly at the design stage. Furthermore, this domain includes a decision support system and knowledge base with manufacturing and design guidelines following the adoption of ICT. With this in mind, ‘Design for manufacturing and assembly/disassembly: Joint design of products and production systems’, a special issue has been conceived and its contents are elaborated in detail. In this paper, a background of the topics pertaining to DFM, DFA and related topics seen in today’s manufacturing systems are discussed. The accepted papers of this issue are categorised in multiple sections and their significant features are outlined.  相似文献   

11.
ABSTRACT

Intelligent sensing and computerized data analysis are inducing a paradigm shift in industrial statistics applied to discrete part manufacturing. Emerging technologies (e.g., additive manufacturing, micro-manufacturing) combined with new inspection solutions (e.g., non-contact systems, X-ray computer tomography) and fast multi-stream high-speed sensors (e.g., videos and images; acoustic, thermic, power and pressure signals) are paving the way for a new generation of industrial big-data requiring novel modeling and monitoring approaches for zero-defect manufacturing. Starting from real industrial problems, some of the main challenges to be faced in relevant industrial sectors are discussed. Viable solutions and future open issues are specifically outlined.  相似文献   

12.
Rapid and cost-effective scalability of the throughput of manufacturing systems is an invaluable feature for the management of manufacturing enterprises. System design for scalability allows the enterprise to build a manufacturing system to supply the current demand, and upgrade its throughput in the future, in a cost-effective manner, to meet possible higher market demand in a timely manner. To possess this capability, the manufacturing system must be designed at the outset for future expansions in its throughput to enable growths in supply exactly when needed by the market. A mathematical method that maximises the system throughput after reconfiguration is proposed, and an industrial case is presented to validate the method. The paper offers a set of principles for system design for scalability to guide designers of modern manufacturing systems.  相似文献   

13.
14.
Automated manufacturing systems have been studied widely in terms of scheduling. As technology evolves, the behaviour of tools in automated manufacturing systems has become complicated. Therefore, mathematical approaches to the analysis of complex schedules no longer reflect reality. In this paper, we propose a systematic way of conducting simulation experiments to evaluate the complex operating schedules of automated manufacturing systems. A simulation model is based on a timed Petri net to take advantage of its mathematical strength. Since a Petri net cannot itself have token firing rules, we introduce additional states called operational states. Operational states are not directly related to a Petri net, and are only used for decision making. In addition, a decision function that is responsible for the conflict resolution of a Petri net model and an operational state transition function are introduced. The parallel simulation concept is also suggested by dividing a Petri net into several independent decision sub-nets. A multi-cluster tool system for semiconductor manufacturing is analysed as an application.  相似文献   

15.
电弧增材制造因其独特的无模壳快速近净成形特点而备受关注,有望成为突破铝合金材料研发与工业应用瓶颈的先进制造技术。电弧增材技术在传统电弧焊接的基础上发展而来,二者均以高能电弧为热源、以金属丝材为原材料进行成形。本文综合分析了电弧增材制造工艺与设备研发现状、凝固与固态相变特性、显微组织特点、冶金缺陷概况以及力学性能特点,论述了热丝及多丝增材制造技术前景和电弧增材制造独特的成形方式与相变显微组织特征。针对电弧增材制造铝合金制造精度及稳定性较差、气孔及热裂缺陷严重、材料力学性能优势不突出的问题,提出了电弧增材制造专用设备开发、熔丝累加快速凝固冶金缺陷控制专用方法研发、专用材料成分及显微组织设计、专用热处理工艺制定等发展方向,为加快电弧增材制造铝合金高端化、定制化、专属化发展提供重要参考。  相似文献   

16.
Flexible electronics have witnessed exciting progress in academia over the past decade, but most of the research outcomes have yet to be translated into products or gain much market share. For mass production and commercialization, industrial adoption of newly developed functional materials and fabrication techniques is a prerequisite. However, due to the disparate features of academic laboratories and industrial plants, translating materials and manufacturing technologies from labs to fabs is notoriously difficult. Therefore, herein, key challenges in the materials manufacturing of flexible electronics are identified and discussed for its lab-to-fab translation, along the four stages in product manufacturing: design, materials supply, processing, and integration. Perspectives on industry-oriented strategies to overcome some of these obstacles are also proposed. Priorities for action are outlined, including standardization, iteration between basic and applied research, and adoption of smart manufacturing. With concerted efforts from academia and industry, flexible electronics will bring a bigger impact to society as promised.  相似文献   

17.
Manufacturing systems of the future highly demand that the product data are built into the product model,and smooth data transfer to other computer-aided technologies are enabled.Depending on the type of the manufacturing system,it is envisaged that virtual engineering(VE) technologies play a significant role in integrating the computer-based technologies involved in the product's life cycle.Simulations in a virtual world and exchange of real-time product or design data are among the benefits for today's global oriented manufacturing business.To highlight the significance of design as carrier of product data and the key role played by VE technologies to inter-link design,manufacturing and associated components,this paper presents an overview and analysis of the state-of-the-art VE technologies to indicate potential applications and future research directions.  相似文献   

18.
《工程(英文)》2017,3(5):588-595
With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further “leverage existing resources... to nurture manufacturing innovation and accelerate commercialization” by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10-year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Internet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applications that are based on commercially available platforms such as General Electric (GE)’s Predix and PTC’s ThingWorx.  相似文献   

19.
论制造系统模式的新进展   总被引:12,自引:0,他引:12  
分析了制造系统模式变迁的原因;论述了现代制造系统模式的新特征,即客户化动态系统、可变性、自组织、自治与协调、全生命周期高的成本效率以及集成进化;提出了支持现代制造系统模式的若干关键技术,包括时变制造过程建模、自适应生产管理以及现代集成技术等;介绍了可重构制造系统、多智能代理制造系统、子整制造系统以及虚拟生产系统等现代制造系统;并从工业工程的角度,讨论了发展中国现代制造系统模式的若干问题,即改变金字塔式的集中管理组织结构,合理地发挥人的作用以及重视信息技术的应用。  相似文献   

20.
Manufacturing systems continue to adapt in order to survive the changing and challenging markets and global competition. Product and manufacturing design and capabilities are configured to allow the needed adaptation through innovative design, improved system paradigms, intelligent design and optimisation models, and product grouping to increase efficiency. In this research, it is hypothesised that the evolution and co-evolution of products and the machines used to manufacture them is akin to that observed in the adaptation of biological species. The symbiosis between products and manufacturing capabilities is studied using real examples, and a new model that establishes the symbiotic relationship between their evolution paths and observed co-evolution trends based on available historical information is proposed. Dual cladograms are used to track their evolution and detect useful potential development and plausible future evolution trends. When a state of co-evolution equilibrium is reached, a stimulus for more abrupt changes would be needed to cause further evolution on both sides. The co-evolution model has been applied to an example based on analysing the history of machine tools development and data from a major machine tools manufacturer. The evolution and co-evolution hypotheses of machined parts and machine tools were charted up to the currently observed state of equilibrium in this application field. This innovative model of co-evolution in manufacturing can help improve the utility of manufacturing resources and prolong the life of manufacturing systems beyond a single product generation and its variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号