首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A multiband circularly polarized slot antenna for wireless local area networks (WLAN) and worldwide interoperability for microwave access (WiMAX) applications is designed, studied, and fabricated. Using modified ground plane structure, circular polarized characteristics are realized. An open rectangular loop is introduced on the ground plane to generate orthogonal modes at middle resonance frequency. At higher resonance frequency to improve axial ratio bandwidth, a D‐shaped radiator is used. Thus, the cooperation of modified ground plane, open loop resonator, and D‐shaped radiator improves performance of the antenna at all the required bands. The proposed microstrip antenna generates separate impedance bandwidths to cover frequency bands of WLAN and WiMAX applications. The realized antenna is relatively small in size 40 × 54 mm2 or 0.26_ × 0.36_ where _ is the free‐space wavelength at the desired first resonant frequency 2.0 GHz and operates over frequency ranges 26% (2.0‐2.6 GHz), 8.9% (3.21‐3.51 GHz), and 50.6% (3.8‐6.38 GHz). In addition, the antenna exhibits 5% (2.32‐2.44 GHz), 5.8% (3.3‐3.5 GHz), and 5.2% (5.61‐5.91 GHz) Circular Polarization bandwidth, making it suitable for WLAN and WiMAX applications.  相似文献   

2.
A printed dual‐band filtering antenna with decent frequency selectivity at 2.45 and 5.2 GHz for wireless local area network (WLAN) applications is developed. The filtering antenna is compact, which comprises a tapped feed line, two dual‐band stub‐loaded open‐loop resonators, and a dual‐band bended monopole. It can be easily printed on a single layer PCB substrate with low profile and low cost. The entire structure is very simple compared with the previously reported dual‐band filtering antennas that requiring multi‐layer structures. The monopole functions as not only a radiator, but also the last resonator of a dual‐band filter. The developed antenna exhibits good frequency selectivity and out‐of‐band suppression. In addition, the two operation bands can be adjusted relatively individually. The proposed antenna is optimized and fabricated. The experimental results show it has good frequency selectivity at both 2.45 and 5.2 GHz, wide bandwidth 11.8% and 7.8%, and excellent out‐of‐band suppression.  相似文献   

3.
A new design of a gap coupled rectangular patch antenna with meandered parasitic elements and a circular ring at the feed line has been proposed for Bluetooth, WLAN, WiMAX, C, and X band applications. Multibands at 1.26 to 1.36 GHz, 1.83 to 3.81 GHz, 7.6 to 7.85 GHz, 9.6 to 10.74 GHz, and 13.58 to 14.23 GHz with impedance bandwidth of 6.0% and 70.21%, 3.23%, 11.2%, and 4.67%, respectively, are observed. Multiple bandwidth enhancement techniques such as using symmetrical meandered parasitic patches, gap coupling, and defected ground have been employed in one design. Circular ring feed structure and meandered parasitic patches enhance the percentage impedance bandwidth from 12.11% to 70.21%.  相似文献   

4.
A multiband planar symmetrical plus‐shaped fractal monopole antenna with stepped ground plane is presented in this study. Measured results show that the proposed antenna operates with 10 dB return loss bandwidths from 1.630 to 1.88 GHz and from 4.5 to 8.5 GHz covering The Global System for Mobile Communications (GSM) 1800 MHz 2G spectrum band, 4400 to 4900 MHz 5G spectrum band adopted by Japan and China for future 5G communication in sub‐6 GHz band, 5.15 to 5.925 GHz LTE band 46, WLAN IEEE 802.11 y/a/h/j/n/P bands, and 5.8 to 7.707 GHz military band. The antenna gain varies between 1.73 and 1.97 dB in lower band and 3.6 to 5.05 dBi in upper band with radiation efficiencies more than 90% in lower band and more than 80% in upper band. The antenna has more than 64 and 28 dB isolations between the copolar and cross‐polar radiation patterns in the lower and upper bands, respectively.  相似文献   

5.
This article proposes a compact (6 × 21 × 0.4 mm3) antenna with dual‐band operation that satisfies the wireless local area network. To achieve optimal impedance matching for the lower and upper operating bands, the proposed antenna structure is designed as a quasi‐self‐complementary (QSC) type, in which the lower (2.4 GHz) operating band is excited through the loop‐like structure of the proposed antenna, whereas its self‐complementary counterpart (rectangular patch structure) induces the upper (5.2/5.8 GHz) operating band. Further investigation was also conducted by printing the proposed QSC antenna onto a flexible substrate of 0.063 mm in thickness. To cover both operating bands, the proposed flexible antenna was restructured to 20.5 × 8 mm2. The design and initial characteristics of the two proposed antennas were discussed in detail via simulation, and the experimental results showed satisfactory performance of both operating bands. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:298–305, 2014.  相似文献   

6.
This article presents a miniaturized ultra‐wideband planar monopole antenna with an oval radiator. The proposed antenna is fed by a coplanar waveguide (CPW), and two L‐shaped stubs are extended from the ground plane of the CPW. This presented antenna is able to produce resonances in the lower frequency band and realize better impedance matching performance in the middle and higher frequency bands with the aid of the L‐shaped stubs. The antenna was built and tested. The total size of the proposed antenna is only 26 × 20 × 1.6 mm3. Its measured –10 dB impedance bandwidth is 10.1 GHz (3.1‐13.2 GHz). The measured far‐field radiation patterns are stable in the whole operating frequency band.  相似文献   

7.
This letter investigates an integrated antenna configuration for WLAN/WiMAX applications. The proposed composite antenna configuration is simply the grouping of ring dielectric resonator along with reformed square‐shaped slot antenna. Three significant characteristics of proposed article are: (1) aperture act as magnetic dipole and excite HE11δ mode in ring dielectric resonator antenna; (2) reforming of square aperture generates orthogonal modes in ring DRA and creates CP in lower frequency band; (3) annular‐shaped Microstrip line along with reformed square aperture creates CP wave in upper frequency band. With the purpose of certifying the simulated outcomes, prototype of proposed structure is fabricated and tested. Good settlement is to be got between experimental and software generated outcome. Experimental outcomes show that the proposed radiating structure is operating over 2 frequency bands that is, 2.88‐3.72 and 5.4‐5.95 GHz. Measured 3‐dB axial ratio bandwidth in lower and upper frequency band is approximately 9.52% (3.0‐3.4 GHz) and 5.85% (5.64‐5.98 GHz), respectively. These outcomes indicate that the proposed composite antenna structure is appropriate for WLAN and WiMAX applications.  相似文献   

8.
Present article embodies the design and analysis of an octagonal shaped split ring resonator based multiband antenna fed at vertex for wireless applications with frequency‐band reconfigurable characteristics. The proposed antenna is printed on FR4 substrate with electrical dimension of 0.4884 λ × 0.4329 λ × 0.0178 λ (44 × 39 × 1.6 mm3), at lower frequency of 3.33 GHz. The antenna consists of SRR based vertex fed octagonal ring as the radiation element and switchable reclined L‐shaped slotted ground plane. Antenna achieves six bands for wireless standards viz: upper WLAN (5.0/5.8 GHz), lower WiMAX (3.3 GHz), super extended C‐band (6.6 GHz), middle X band (9.9 GHz—for space communication), and lower KU band (15.9 GHz—for satellite communication systems operating band). Stable radiation patterns are observed for the operating bands with low cross polarization. The proposed design achieves hexa band characteristics during switching ON state of PIN diode located at reclined L‐shaped slot in the ground plane. Experimental characteristic of antenna shows close agreement with those obtained by simulation of the proposed antenna.  相似文献   

9.
A compact microstrip patch antenna with two U‐slots shape is presented. Detailed simulation and experimental investigation are conducted to understand the behavior of the two U‐slots. The proposed antenna generates three resonant frequencies at 2.7, 3.3, and 5.3 GHz. It can, therefore, be used in Worldwide Interoperability for Microwave Access compliant communication equipment. The proposed antenna has two U‐slot shaped and two bridge elements to connect both shapes together to adapt the structure to the desired interest operating frequency. A comprehensive parametric study has been applied to understand the effect of each U‐slot on the antenna's performance. Moreover, the current distribution for the three bands is investigated to give further understanding of the antenna behavior. The proposed antenna is verified experimentally and the simulated and measured results are in good agreement. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

10.
Present article embodies the design and analysis of slotted circular shape metamaterial loaded multiband antenna for wireless applications with declination of SAR. The electrical dimension is 0.260 λ × 0.253 λ × 0.0059 λ (35 × 34 × 0.8 mm3) of proposed design, at lower frequency of 2.23 GHz. The antenna consists of circular shape rectangular slot as the radiation element loaded with metamaterial split ring resonator (SRR) and two parallel rectangular stubs, etched rectangular single complementary split‐ring resonator (CSRR) and reclined T‐shaped slot as ground plane. Antenna achieves hepta bands for wireless standards WLAN (2.4/5.0/5.8 GHz), WiMAX (3.5 GHz), radio frequency identification (RFID) services (3.0 GHz), Upper X band (11.8 GHz—for space communication) and Lower KU band (13.1 GHz—for satellite communication systems operating band). Stable radiation patterns are observed for the operating bands with low cross polarization. The SRR is responsible for creating an additional resonating mode for wireless application as well as provide the declination in SAR about 13.3%. Experimental characteristic of antenna shows close agreement with those obtained by simulation of the proposed antenna.  相似文献   

11.
In this article, a new A‐shaped dielectric resonator antenna (DRA) excited by a conformal strip is proposed for wideband applications. The wide bandwidth is achieved by combining two adjacent modes that is, TM101 and TM103. The experimental results demonstrate that the proposed DRA offers an impedance bandwidth (for S11?10 dB) of 59.7% (3.24‐6.0 GHz), covering IEEE 802.11 and U‐NII bands. The antenna provides a fairly stable radiation pattern with the gain ranging from 5.29 to 7 dBi across the operating bandwidth. A dual‐element multiple‐input multiple‐output (MIMO) system is also realized using the proposed wideband DRA. The impedance bandwidth of the dual‐element MIMO antenna is 59.2% and 60.9% for Port1 and Port2, respectively and the isolation between the ports is better than 20 dB across the bandwidth. For Port1, the gain of the MIMO antenna ranging from 6.03 to 7.45 dBi is obtained across the bandwidth. Furthermore, the diversity performance of the MIMO antenna is found to be good with envelope correlation coefficient below 0.003 over the operating band. The proposed antenna could be the potential candidate for worldwide interoperability for microwave access (WiMAX), wireless local area network (WLAN) and lower European UWB frequency band (3.4‐5.0 GHz) applications.  相似文献   

12.
A novel triple‐band antenna element by etching parasitic slot on ground plane is presented. A three‐element antenna system for WLAN MIMO communications is fabricated by using the proposed antenna element. The triple‐band antenna element is designed for the WLAN standard frequency ranges (2.4‐2.485, 5.15‐5.35, and 5.475‐5.725 GHz). The three identical antenna elements are rotationally symmetric on the substrate, isolated by using metal‐vias cavity. The measured average peak gain within the operational bandwidth is about 2.7 dBi. The isolation between the antenna elements can achieve better than 17 dB at the lower band (2.25‐2.65 GHz), while more than 32 dB at the higher bands (5.20‐5.35 and 5.47‐5.73 GHz) is obtained.  相似文献   

13.
A compact coplanar waveguide‐feed monopole antenna with dual‐band characteristics is proposed in this article. The proposed antenna mainly consists of meander T‐shaped monopole and small ground plane embedded with a pair of L‐shaped couple slots and two pairs of I‐shaped notched slots symmetrically. By elongating the meander T‐shaped arms and carefully selecting the positions and lengths of L‐shaped slot and I‐shaped slot, the antenna excites four resonant frequencies at 2.42, 2.52, 4.75, and 5.54 GHz which are formed into two wide bands to cover all the 2.4/5.2/5.8 GHz wireless local area network (WLAN) operating bands, and is with miniaturization structure. Moreover, the antenna can provide nearly dipole‐like radiation patterns and good gains across the dual operating bands. These results prove that the proposed dual‐band antenna is very suitable for WLAN applications. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

14.
In this article, a novel compact triple‐band stacked monopole antenna for USB dongle applications is proposed. The antenna consists of an e‐shaped monopole connected directly to the feedline and a square patch‐shaped monopole at another layer connected to feedline by a metallic pin. The e‐shaped monopole is used to obtain WLAN band (2.4‐2.48 GHz) and WiMAX band (3.4‐3.69 GHz). On the other hand, square patch‐shaped monopole is introduced to get WLAN bands (5.15‐5.35 and 5.725‐5.825 GHz) and WiMAX band (5.25‐5.85 GHz). The antenna is compact with the dimension of 17 × 13 mm2.  相似文献   

15.
In this article, investigation has been carried out on Y‐shaped patch antenna to produce triple‐band for wireless applications. The corrugated Y‐shaped patch antenna is considered to produce low reflection coefficient with high gain at the triple‐bands. The corrugated Y‐shaped patch antenna is resonates at 4.19 GHz (4‐4.43 GHz), 8.79 GHz (8.61‐9.01 GHz), 13 GHz (12.6‐13.6 GHz) frequencies with reflection coefficient of ?29.26 dB, ?34.87 dB, ?40.37 dB and gain 5.01 dBi, 5.42 dBi, 7.46 dBi, respectively. The proposed corrugated Y‐shaped patch antenna works three frequency bands at radio communications, satellite communications, and aeronautical radio navigation applications, respectively.  相似文献   

16.
A compact MIMO antenna was proposed in this article. The designed antenna is compact in size with dimensions of 20 × 34 × 1.6 mm. In this proposed antenna model the patch consisting of two counter facing C‐shaped elements facing each other in which a hexagonal ring attached to a strip line which is placed in between the two C‐shaped patch acts as the stub. The novelty of the antenna elements lies isolation improvement by using the ground stub with the use of circular ring resonator. The proposed antenna operates in four bands in which 2.66 to 3.60 GHz (Wi‐Max, Wi‐Fi), 4.52 to 5.78 GHz (WLAN), 6.59 to 7.40 GHz (satellite communication), and 9.55 to 10.91 GHz and having bandwidth of 0.94, 1.26, 0.81, and 1.36 GHz at four bands. The envelope correlation coefficient is ECC ≤ 0.3 and diversity gain > 9.8 dB for the operating bands of antenna proposed. This antenna can work in the bands of Wi‐Max, Wi‐Fi, WLAN, satellite communication in X‐band and for radio location, and astronomy applications.  相似文献   

17.
In this article, compact ring‐shaped dielectric resonator antenna (DRA) along with moon‐shaped defected ground structure (DGS) was studied. The proposed antenna was fed by microstrip line shifted from center position, which excited TE01δ mode in ring DRA. Moon‐shaped DGS was acting as a radiator and also reduced the size of proposed antenna by an amount of 14.87% (lower frequency band) and 48.77% (upper frequency band). The proposed antenna was designed to resonate at two different frequencies namely 2.24 and 5.82 GHz with a fractional bandwidth of 30.17% and 22.14%, respectively. Based on optimized design parameters, archetype of antenna structure has been constructed and measured successfully, which shows good agreement with simulated ones. The proposed antenna design was suitable for WLAN (2.4/5.2/5.8 GHz); WiMAX (2.5/5.5 GHz); AMSAT (5.6/5.8 GHz); and WAVE (5.9 GHz) bands. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:503–511, 2016.  相似文献   

18.
In this article, we present a new broadband CP square‐slot antenna with an inverted F‐shaped feed‐line. The antenna is composed of an inverted F‐shaped feed‐line, pairs of isosceles triangular chamfers, I‐shaped slots, rectangular slots and triangular patches, and a Z‐shaped strip. By introducing these strips and slots into the square‐slot, multiple CP modes can be stimulated simultaneously, which eventually enhances 3‐dB ARBW and 10‐dB impedance bandwidth (IBW) of the presented antenna. The measured results show that its IBW (|S11| < ?10 dB) is about 7.2 GHz (87.8% from 4.6 to 11.8 GHz) and its ARBW (AR < 3 dB) is 8.3 GHz (96% from 4.5 to 12.8 GHz).  相似文献   

19.
This article investigates a dual band multiple input multiple output (MIMO) cylindrical dielectric resonator antenna (cDRA) for WLAN and WiMAX applications. It consists of two symmetrical orthogonally placed radiators. Each radiator is excited through a narrow rectangular aperture with the help of a microstrip line. For higher mode excitation, the proposed structure uses dual segment DRA which apparently looks like stacked geometry. The aperture fed dielectric resonator works as a feed for upper cDRA to generate higher order mode. The presented radiator covers the band between 3.3‐3.8 GHz and 5‐5.7 GHz. The measured isolation is better than 20 dB in the desired band. The average gain and radiation efficiency achieved for the proposed antenna is 6.0 dBi and 85%, respectively at the operating frequency band. In the proposed geometry, broadside radiation patterns are achieved by exciting HEM11δ and HEM12δ modes in a stacked geometry. Different MIMO performance parameters (ECC, DG, MEG, and CCL) are also estimated and analyzed. The prototype of proposed antenna is fabricated and tested. The measured outcomes are in good accord with the simulated one.  相似文献   

20.
This study designed a compact size (45 mm × 9 mm × 1.6 mm) stand‐alone dualband inverted‐F antenna (IFA) printed on a low‐cost FR4 substrate for dual‐network WLAN (2.4/5.2/5.8 GHz) and WiMAX (2.5/3.5/5.5 GHz) operating bands. To achieve broad 10‐dB bandwidth of more than 45% and 31% for the lower and upper operating bands, respectively, the techniques of shorting the open‐end of the microstrip feed line to the driven monopole and loading a C‐shaped parasitic element with dissimilar arm lengths into the opposite side of the IFA were introduced. Further experimental results also show that the proposed IFA have efficiencies of more than 60% throughout the bands of interest. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:523–528, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号