首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
故障轴承的振动信号是非平稳信号,传统的非平稳信号分析手段存在许多不足;BP网络能够出色地解决传统识别模式难以解决的复杂问题。提出了经验模态分解(EMD)与BP神经网络相结合的滚动轴承故障诊断方法。采用EMD方法对振动信号进行分解,得到组成信号的多个内禀模态分量(IMF),提取重要的IMF分量的能量作为信号的特征量;采用BP网络作为模式分类器,对轴承的故障类型进行分类。经试验数据分析证明,该方法能够准确地对轴承故障进行诊断。  相似文献   

2.
《工矿自动化》2016,(4):51-54
根据煤矿绞车齿轮箱轴承在变速变载工况下振动信号的频率一直发生变化的特征,提出采用EMD方法进行绞车轴承故障诊断。在较大拖动力与较大转频阶段,根据轴承座在正常状态与故障状态下振动信号的IMF分量的能量与总能量的比值及均方根能量来判断轴承工作状态,通过提取故障信号频率的边际谱判断故障位置。实验结果证明了EMD方法能够有效检测出绞车齿轮箱轴承故障。  相似文献   

3.
将改进的小波阈值去噪与EMD分解相结合应用于轴承故障诊断中。该方法首先利用改进的小波阈值去噪法对原始信号进行去噪,然后采用EMD方法将去噪后的信号自适应地分解成一系列IMF分量之和,通过能量-相关系数法选取能够反映故障特征的IMF分量进行包络谱分析提取故障频率。实验结果表明该方法能够有效识别故障特征频率。  相似文献   

4.
基于BP神经网络模型的电机故障诊断专家系统   总被引:13,自引:0,他引:13  
针对传统机械设备故障诊断专家系统存在知识获取能力弱、求解有一定局限性等问题,介绍了BP神经网络旋转机械故障诊断专家系统,对单位BP算法,BP神经网络的建立、训练及应用作了具体说明。该系统学习效率高,故障诊断准确,已成功应用于铁路机车走行部的轮对电机在线故障诊断。  相似文献   

5.
提出了一种基于PSO-RBF神经网络的电机轴承故障诊断方法.针对RBF神经网络泛化能力方面的不足,利用PSO算法对RBF神经网络的参数进行优化,然后采用优化后的PSO-RBF神经网络对轴承的故障形式进行诊断.结果表明, PSO-RBF神经网络的分类效果较好,在故障诊断领域有很好的应用价值.  相似文献   

6.
针对传统的异步电动机轴承故障诊断方法对于轴承的局部缺陷及早期故障的诊断效果不明显的问题,提出了一种采用小波包理论与EMD相结合的方式提取异步电动机轴承故障特征频率的方法。该方法先采用小波包理论对原始信号进行消噪及频带划分,接着采用EMD对小波分解重构得到的信号进行分解以获得固有内在模函数(IMF),最后将IMF经时频变换得到频谱图,根据故障特征频率得出诊断结果。实验结果证明,该方法可有效地提取出故障特征频率,并方便地判断出故障类型。  相似文献   

7.
基于改进BP神经网络的传感器集成故障诊断   总被引:4,自引:1,他引:4  
针对传感器故障,提出了一种基于改进的BP神经网络的集成故障诊断方法。在测量回路中引入“等价偏差”向量,用改进的BP网络建立传感器故障模型,对系统的状态和故障参数进行在线估计,然后将故障参数与修正的Bayes分类算法(MB算法)相结合.进行传感器故障在线检测、分离和估计。对连续搅拌釜式反应器(CSTR)的仿真结果表明,该集成故障诊断方法能够对多重传感器故障进行快速准确的分离和估计,并对传感器故障具有容错性。  相似文献   

8.
基于改进BP神经网络的某型装备故障诊断专家系统   总被引:7,自引:0,他引:7  
分析神经网络和专家系统的特点.提出基于BP神经网络与专家系统结合的某型装备的故障诊断方法,构造BP神经网络的装备故障诊断专家系统的诊断模型,克服传统专家系统在知识获取和表达的薄弱环节,并用某型装备的故障实际数据进存验证,结果表明神经网络与专家系统结合是一种有效的诊断方法。  相似文献   

9.
故障诊断是计算机模式识别领域的一个活跃课题。文中提出一种基于BP神经网络和支持向量机(SVM)的电机故障诊断方法,设计了适合该诊断系统的网络结构。仿真结果表明:该网络结构比BP算法具有更快的学习速度和更高的学习精度,完全适用于电机故障诊断系统。  相似文献   

10.
提出一种基于改进BP算法的异步电机故障诊断方法,不仅能够对电机的四种故障状态做分类识别,而且能够提高网络的收敛速度并避免其陷入局部极小.首先,根据故障特征向量与异步电机故障类别之间的映射关系,建立基于BP神经网络的故障诊断模型,然后利用故障样本对该模型进行训练与测试.仿真结果表明,该方法能有效地识别异步电机的四种故障类...  相似文献   

11.
基于BP神经网络的故障诊断技术研究   总被引:4,自引:0,他引:4  
分析了传统的故障诊断方法的特点和缺点,在此基础上选择BP神经网络应用于故障诊断,详细探讨了BP神经网络的建模方法,根据设备的层次结构和特点,将集成神经网络应用于故障诊断,有效地克服了单一神经网络故障诊断的一些缺点,大大提高了故障诊断的效率和准确率.  相似文献   

12.
为了快速准确诊断出无线电罗盘多故障模块,针对诊断过程中的过拟合现象提出了基于提前停止法的学习率可变BP算法,并运用多级BP神经网络诊断思想,得出基于多级BP神经网络的多故障诊断方法;文中根据多级BP神经网络的多故障诊断方法,对具体的机载无线电罗盘测向电路建模仿真,将复杂的无线电罗盘电路分解为3个子网络,并对每个子网络建立合适的故障集,按顺序依次诊断得出无线电罗盘电路中的故障模块;此方法可快速准确定位电路中的多处故障模块,准确率较高且缩短了诊断时间.  相似文献   

13.
为了有效地利用卫星下传的海量遥测数据,在测试过程中对卫星进行实时的故障诊断,提出了一种基于BP神经网络的卫星故障诊断方法;该方法包括离线自主学习和实时在线故障诊断两部分;离线自主学习部分基于历史数据库和更新样本进行自主学习,学习获得神经网络模型存储于知识库;实时在线故障诊断部分依据相应的神经网络模型,对遥测数据进行实时在线的诊断;为了验证基于BP神经网络的卫星故障诊断方法的有效性和优越性,以现有型号三轴稳定近地卫星控制分系统为实验对象,利用该方法对具有代表性的红外地球敏感器和动量轮的相关遥测数据进行分析;通过将该方法的实验结果与基于Kalman滤波的方法的实验结果进行对比分析,表明该方法能够有效地对卫星的故障进行诊断。  相似文献   

14.
In this paper, the conception and the development of the fault diagnosis technology are discussed, and the problems of fault diagnosis technology is solved in power plants by analyzing the actual and existing problems in the field of power plants fault diagnosis technology. Then we reveal the reliable technique to diagnose software by using BPNN in power plants fault diagnosis process. The experiment shows that complex model can be constructed by using this method and parameter estimation is done easily. This method is also fit for different datum sets, and it has less error. It is an efficient method in power plants fault diagnosis.  相似文献   

15.
提出了基于BP神经网络的四旋翼无人机故障诊断方法,但考虑到经典BP神经网络算法误差收敛速率慢,训练学习容易陷入局部最优值等缺陷,设计了一种基于改进型遗传算法(Genetic Algorithm)优化BP神经网络.改进型GA算法对编码方式和选择算子进行了优化,同时对交叉和变异算子等参数进行了调整.Matlab仿真表明,改进后的BP神经网络算法的检测性能有了明显的增强,避免了经典BP算法容易陷入局部最优值的问题.  相似文献   

16.
遗传算法优化后的 BP 神经网络具有较好的全局搜索能力,但在迭代后期要求有较好的局部搜索能力,因此,通过对遗传算法进行改进,来平衡系统的全局搜索能力和局部搜索能力。实验表明,改进后的遗传算法能对各种故障进行可靠的分类,有效地提高了故障诊断的效率和准确度。  相似文献   

17.
针对传统的BP神经网络模式分类算法在各个网络输出值较为接近或者模式类之间的网络输出值接近的情况下容易发生误判的问题,提出一种基于模式相关的BP神经网络分类算法,并结合具体电路,运用该方法进行建模、仿真.实验结果表明,采用模式相关的BP神经网络分类算法能够充分利用网络输出层各个节点的所有输出,增强了网络的输出特性,便于正确、方便的进行模式分类,且分类效果良好,具有一定的通用性.  相似文献   

18.
提出利用BP神经网络进行电子电路故障诊断的基本思想、基本步骤,并通过MATLAB软件编程,对实际问题的解决进行仿真,说明该技术的可行性和有效性,为电子电路的故障诊断提出新思路。  相似文献   

19.
基于BP神经网络的智能BIT故障诊断系统研究   总被引:2,自引:0,他引:2  
论述了智能BIT的设计、检测、诊断、决策四个方面的主要研究内容,分析了BP神经网络的网络模型及工作原理,构建了基于BP神经网络的智能BIT故障诊断系统,并用某雷达录取终端的故障实际数据进行了验证。结果表明将神经网络与智能BIT结合是一种有效的诊断方法,解决了传统BIT故障诊断能力不足,导致系统虚警率过高、自适应性能差等问题,使被测系统具有更高的故障诊断能力。  相似文献   

20.
通过分析BP神经网络和Elman神经网络的基本结构和算法,研究了基于神经网络的模拟电路故障诊断方法,并通过仿真实验对比分析了BP神经网络和Elman神经网络的诊断能力。结果表明,BP神经网络的收敛速度相对较慢、训练时间长;Elman神经网络的结构参数调整简单、训练时间短、性能稳定,更适合存在容差、非线性等问题的模拟电路故障诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号