首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Following a recent upgrade, the Digital Video Broadcasting—Return Channel Satellite (DVB‐RCS) standard sets up to support terminal mobility. In this scenario, integration with terrestrial systems becomes a primary concern to ensure network connectivity in urban areas. This article proposes an integrated satellite–terrestrial architecture for the provision of broadband services onboard high‐speed trains, in which terrestrial cellular networks are seen as viable gap‐fillers for discontinuous satellite coverage. We derive an analytical model of the hybrid DVB‐RCS‐cellular system by exploiting analogies between the mobility pattern predictability of LEO constellations and that of high‐speed trains. Terminals whose QoS cannot be guaranteed by the satellite segment are proposed to temporarily divert the connections towards the terrestrial infrastructure, where available. Using an iterative approach based on the Erlang fixed‐point approximation, we show performance improvements with respect to stand‐alone satellite systems in terms of handover failure probability and overall resource utilization. The analytical model is also validated via our ns2‐based DVB‐RCS packet‐level simulator. Detailed modelling of synchronization and signalling mechanisms confirms the accuracy of the analytical results, and shows that topology and mobility information can contribute to refine radio resource utilization optimality when used jointly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The integration of satellite and terrestrial networks is a promising solution for extending broadband coverage to areas not connected to a terrestrial infrastructure, as also demonstrated by recent commercial and standardisation endeavours. However, the large delays and Doppler shifts over the satellite channel pose severe technical challenges to traditional terrestrial systems, as long‐term evolution (LTE) or 5G. In this paper, 2 architectures are proposed for a low Earth orbit mega‐constellation realising a satellite‐enabled LTE system, in which the on‐ground LTE entity is either an eNB (Sat‐eNB) or a relay node (Sat‐RN). The impact of satellite channel impairments as large delays and Doppler shifts on LTE PHY/MAC procedures is discussed and assessed. The proposed analysis shows that, while carrier spacings, random access and RN attach procedures do not pose specific issues and hybrid automatic repeat request requires substantial modifications. Moreover, advanced handover procedures will be also required due to the satellites' movement.  相似文献   

4.
This paper discusses networking issues associated with the provision of L/S-band personal satellite communications. Both the UMTS and IMT-2000 third generation mobile communication concepts have identified the need for a satellite component as part of their overall structure. The work is mostly based on the ESA-developed medium altitude global satellite system (MAGSS-14).1 It is, therefore, mainly relevant to MEO (medium earth orbit) constellations but most ideas can also be extended to LEO (low earth orbit) constellations. After examining user and service requirements the specific networking issues associated with personal satellite communications are reviewed. A network architecture is then proposed which takes these restrictions into account. Based on this network architecture, network signalling requirements, more specifically those relevant to network common control channels, are estimated.  相似文献   

5.
A real-time simulation study for the evaluation of traffic flow in low earth orbit (LEO) satellite constellations, used for the interconnection of high-speed networks, is presented in this paper. The proposed model simulates the traffic process end to end at the packet level, supporting successfully the implementation of self-similar traffic sources, a modelling approach that has been considered more realistic than the well-known Poisson, for real-time communications. An in-depth study for the establishment of inter-satellite links (ISLs) and the design of the terrestrial and space segments is presented and the performance of the integrated system is evaluated in terms of delay and throughput parameters. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
It is anticipated that the satellite component of the future universal mobile telecommunications system (UMTS) will be based (partly or totally) on non-geostationary (nonGEO) constellations of satellites to serve mixed populations of users, each category being treated through different contracts stipulating different quality of service (QoS). In particular, we envisage a high-quality premium service which guarantees the success of each handover procedure, called guaranteed handover (GH) service, and a low-cost lower quality service called regular service, where handover failures are accepted provided that the probability of a call being unsuccessful does not exceed a given value. This paper proposes a strategy which eliminates forced call terminations due to handover failures, thus allowing the GH service. This procedure applies to low Earth orbit (LEO) constellations using the satellite-fixed cell technique. An analytical model has been derived to calculate QoS parameters for a mixed population of GH and regular users. Providing both GH service to some users and regular service to other users requires an increased satellite capacity with respect to the case where all the users are served with the regular service; this capacity increase has been evaluated as a function of the percentage of GH users, the traffic load per cell, and the considered satellite mobility environment. The GH approach has been validated through the comparison with another scheme which envisages the queuing of handover requests for privileged users  相似文献   

7.
In order to achieve ubiquitous coverage and service continuity in future 5G network, satellite‐based access is the best solution to complement the terrestrial LTE‐A. In light of this, we introduce a channel‐aware hybrid scheduling technique on the basis of satellite‐LTE spectrum sharing. According to the user‐experienced channel, base stations (eNodeB) and the satellite will work cooperatively. The eNodeB mainly provides service in urban area for high density population. Meanwhile, the satellite will perform either offloading, providing service for under‐served users, or extra coverage for users in rural and remote areas having no coverage of eNodeB. Leveraging the multiuser diversity, we implement a new metrics computation method for hybrid satellite‐LTE downlink scheduler (H‐MUDoS). Compared with other existing schedulers, simulation results clearly demonstrate the high performance of H‐MUDoS in terms of spectral efficiency in addition to improvement of the quality‐of‐service requirements and capacity maximization.  相似文献   

8.
The spectacular growth of cellular telephone networks has demonstrated the demand for personal communications. Communication systems based on low earth orbit (LEO) constellations of satellites seem to be an adequate approach to achieve a world-wide network. When defining the capacity in terms of satellite circuits, the network designer has to take into account the handover traffic. Unfortunately, in a LEO communication network where handover is most often due to the network nodes motion, handover traffic models for terrestrial cellular networks cannot be used. Hence specific models must be developed. This paper proposes an analytical model for the handover in LEO satellite networks. This model is applied to different network configurations and compared to discrete-time simulations. Simulation results agree with those obtained from the analytical model.  相似文献   

9.
Supporting quality of service (QoS) in wireless networks has been a very rich and interesting area of research. Many significant advances have been made in supporting QoS in single wireless networks. However, the support for QoS across multiple heterogeneous wireless networks will be required in future wireless networks. In connections spanning multiple wireless networks, end‐to‐end QoS will depend on several factors such as mobility patterns, connection patterns, and the QoS policies in each of the networks. In this paper, we present an architecture for multiple heterogeneous wireless networks, several QoS schemes, a simulation model and several interesting results. The simulation model can evaluate the QoS performance under a variety of network configurations, user and mobility types, and network resources. Our results show that end‐to‐end QoS depends on several factors, including system utilization, mobility levels, and the individual QoS schemes implemented in individual networks. We also show how the QoS ideas presented in this paper can be used by wireless carriers for improved QoS support and management. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
From a geostationary Earth orbit (GEO) satellite's perspective, a low Earth orbit (LEO) satellite is visible on more than half of its orbit. Albeit the free‐space loss of an inter‐satellite link is much higher than the one of a direct ground link, considerable data rates and download volumes can be achieved. In this paper, we describe the system architecture of an integrated approach for a data relay satellite system and the development of LEO satellite and ground station modems. The approach allows serving several small and inexpensive LEO satellites at the same time both with low rate telemetry/telecommand links and with high rate download of sensor data.  相似文献   

11.
With the advent of the fifth generation of mobile radio communication by 2020, there will be many challenges such as increasing service demand with low delay in providing billions of end users called the satellite mobile users. It is expected that terrestrial communication systems will be faced with a dense network having many small cells anywhere and anytime. Therefore, there are some remote regions in the world where terrestrial systems cannot provide any services to end users. Furthermore, because of lack of spectral resources, it is very important that the spectrum is shared between satellite systems and terrestrial equipment by a suitable solution to interference management. In this paper, a heterogeneous satellite network that includes low earth orbit (LEO) satellite constellation and terrestrial equipment is proposed to provide low delay services. In this type of structure, interference management based on transmission power control between LEO satellite systems and mobile users is very important for obtaining high throughput. Moreover, in order to mitigate interference, transmission power control is shown based on noncooperative Stackelberg game under many subgames through pricing‐based algorithm and convex optimization method. Finally, the simulation results show that the performance of this study's system model will be improved through the proposed algorithm.  相似文献   

12.
低轨卫星通信中基于公平性的信道借用策略   总被引:1,自引:0,他引:1  
黄飞  许辉  吴诗其 《通信学报》2006,27(8):10-17
首先建立了LEO卫星移动模型和用户多媒体业务量模型,然后通过计算机仿真,分析了各种信道分配策略在LEO卫星多媒体通信中的性能,提出了信道借用切换策略(CBS),仿真结果表明其能很好地满足LEO卫星多媒体业务的服务质量(QoS),同时也提高了系统的信道利用率,最后讨论了3种不同信道借用策略的公平性和系统性能。  相似文献   

13.
To meet an ever‐growing demand for wideband multimedia services and electronic connectivity across the world, development of ubiquitous broadband multimedia systems is gaining a tremendous interest at both commercial and academic levels. Satellite networks will play an indispensable role in the deployment of such systems. A significant number of satellite communication constellations have been thus proposed using Geostationary (GEO), Medium Earth Orbit (MEO), or Low Earth Orbit (LEO) satellites. These constellations, however, either require a potential number of satellites or are unable to provide data transmission with high elevation angles. This paper proposes a new satellite constellation composed of Quasi‐GeoStationary Orbit (Quasi‐GSO) satellites. The main advantage of the constellation is in its ability to provide global coverage with a significantly small number of satellites while, at the same time, maintaining high elevation angles. Based on a combination of this Quasi‐GSO satellites constellation and terrestrial networks, the paper proposes also an architecture for building a global, large‐scale, and efficient Video‐on‐Demand (VoD) system. The entire architecture is referred to as a ‘Theatre in the Sky’. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In low earth orbit(LEO) satellite networks,in view of the unbalanced link resource,it's difficult to meet differentiated quality of service(QoS) requirements and easily lead to reduce the efficiency of the whole network.A routing algorithm based on multi-objective decision making was proposed which defined LEO satellite network transmission service as the delay sensitive,sensitive bandwidth and reliability sensitive three categories.It used the eigenvector method to calculate service weights,and used the consistency ratio to determine whether it can be accepted.Based on the multi-objective decision making theory,it combined with the actual state of satellite network nodes and links and the specific requirements of the business,calculating the path that meets the QoS requirements of the service,so as to realize the LEO satellite network multi objective dynamic routing optimization.Established simulation platform based on the iridium network system simulated network delay,the uncertain characteristics like the residual bandwidth and packet error rate,route planning for the randomly generated three classes of business.The simulation results show that,the algorithm not only satisfies the QoS constrain while balancing the traffic load of the satellite link effectively,but also improves the performance on the throughput.  相似文献   

15.
This special issue of the journal on ‘constellations’ comes at a critical time in their development as a second wave of such non‐geostationary satellite orbit (NGSO) systems is being planned and deployed. These mega‐constellations as they have become known are, with a few exceptions, very much larger than those in the first wave and are focused on broadband and 5G applications rather than speech and narrow band data as those deployed in the first wave during the 1990s. However, as we explain in this editorial, there are many similarities in the design and business plans to the first wave and, perhaps, many similar lessons to be learned.  相似文献   

16.
In this article, performance of delay‐sensitive traffic in multi‐layered satellite Internet Protocol (IP) networks with on‐board processing (OBP) capability is investigated. With OBP, a satellite can process the received data, and according to the nature of application, it can decide on the transmission properties. First, we present a concise overview of relevant aspects of satellite networks to delay‐sensitive traffic and routing. Then, in order to improve the system performance for delay‐sensitive traffic, specifically Voice over Internet Protocol (VoIP), a novel adaptive routing mechanism in two‐layered satellite network considering the network's real‐time information is introduced and evaluated. Adaptive Routing Protocol for Quality of Service (ARPQ) utilizes OBP and avoids congestion by distributing traffic load between medium‐Earth orbit and low‐Earth orbit layers. We utilize a prioritized queueing policy to satisfy quality‐of‐service (QoS) requirements of delay‐sensitive applications while evading non‐real‐time traffic suffer low performance level. The simulation results verify that multi‐layered satellite networks with OBP capabilities and QoS mechanisms are essential for feasibility of packet‐based high‐quality delay‐sensitive services which are expected to be the vital components of next‐generation communications networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Recently many companies and consortia have considered launching LEO satellites for such projects as remote sensing, transportation and mining operations. When the multiple low Earth orbit (LEO) satellites are transmitting they can interfere with existing terrestrial microwave and satellite earth-stations in the fixed and mobile service. The interference problem is related to the number of proposed LEOs and the altitude and consequently the time to orbit the earth. These systems usually consist of many small satellites, and each satellite stays in the beam of a terrestrial station for up to 72 seconds in each 222 minute orbit. Earth coverage could be obtained by 48 (LEO) satellites 1500 km above the earth in polar orbit, and hence at least one LEO would always be interfering with terrestrial networks. A technical evaluation would then be required to determine the resultant BER (bit error rate) effecting existing terrestrial services. A determination can then be made to support such a LEO system or object via official channels such as the ITU.  相似文献   

18.
In the near future, low earth orbit (LEO) satellite communication networks will partially substitute the fixed terrestrial multimedia networks especially in sparsely populated areas. Unlike fixed terrestrial networks, ongoing calls may be dropped if satellite channels are shadowed. Therefore, in most LEO satellite communication networks more than one satellite needs to be simultaneously visible in order to hand over a call to an unshadowed satellite when the communicating satellite is shadowed. In this paper, handover characteristics for fixed terminals (FTs) in LEO satellite communication networks are analysed. The probability distribution of multiple satellite visibility is analytically obtained and the shadowing process of satelites for FTs are modelled. Using the proposed analysis model, shadowing effects on the traffic performance are evaluated in terms of the number of intersatellite and interbeam handovers during a call. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Frequent spotbeam handovers in low earth orbit (LEO) satellite networks require a technique to decrease the handover blocking probabilities. A large variety of schemes have been proposed to achieve this goal in terrestrial mobile cellular networks. Most of them focus on the notion of prioritized channel allocation algorithms. However, these schemes cannot provide the connection-level quality of service (QoS) guarantees. Due to the scarcity of resources in LEO satellite networks, a connection admission control (CAC) technique becomes important to achieve this connection-level QoS for the spotbeam handovers. In this paper, a geographical connection admission control (GCAC) algorithm is introduced, which estimates the future handover blocking performance of a new call attempt based on the user location database, in order to decrease the handover blocking. Also, for its channel allocation scheme, an adaptive dynamic channel allocation (ADCA) scheme is introduced. By simulation, it is shown that the proposed GCAC with ADCA scheme guarantees the handover blocking probability to a predefined target level of QoS. Since GCAC algorithm utilizes the user location information, performance evaluation indicates that the quality of service (QoS) is also guaranteed in the non-uniform traffic pattern.  相似文献   

20.
Low earth orbit(LEO) satellite network provides global coverage and supports a wide range of services. However, due to the rapid changes and energy-limitation of satellites, how to meet the demand of the quality of service(QoS) from ground traffic and prolong the lifetime of LEO satellite network is the research emphasis of the investigator. Hence, a routing algorithm which takes into account the multi-QoS requirements and satellite energy consumption(QER) of LEO satellite network is proposed. Firstly, the satellite intimacy degree(SID) and the path health degree(PHD) are introduced to obtain the path evaluation function according to the energy consumption and queue state of the satellite. Then, the distributed routing QER is established through the path evaluation function and the idea of genetic algorithm(GA), which enables each satellite to adjust traffic and realizes the network load balancing. Simulation results show that QER performs well in terms of end-to-end delay, delay jitter, and system throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号