首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For both developed and developing countries, manufacturing plays a crucial role in international competition. There is a growing consensus that 3D printing (3DP) technologies will revolutionise the development of global manufacturing. Although considerable research has previously been conducted to define the technological and economic benefits of 3DP on global manufacturing, minimal research has linked 3DP with Chinese manufacturing (CM). Therefore, to address this research gap and to investigate 3DP’s potential impact on alleviating CM’s development issues, this paper explores the definition, characteristics and mainstream technologies of 3DP, presents the current situation and the main problems of CM, and analyses the potential impact of 3DP on the development of CM. Then, this study introduces the current 3DP promotion and industrialisation situation in China as well as the issues with promoting 3DP in CM.  相似文献   

2.
A timely book, titled ‘Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing’ has been published to discuss the bottleneck issues when adopting 3D printing in manufacturing. This book review provides some personal thoughts and discussions on the new book.  相似文献   

3.
Additive manufacturing is gaining ground in the construction industry. The potential to improve on current construction methods is significant. One of such methods being explored currently, both in academia and in construction practice, is the additive manufacturing of concrete (AMoC). Albeit a steadily growing number of researchers and private enterprises active in this field, AMoC is still in its infancy. Different variants in this family of manufacturing methods are being developed and improved continuously. Fundamental scientific understanding of the relations between design, material, process, and product is being explored. The collective body of work in that area is still very limited. After sketching the potential of AMoC for construction, this paper introduces the variants of AMoC under development around the globe and goes on to describe one of these in detail, the 3D Concrete Printing (3DCP) facility of the Eindhoven University of Technology. It is compared to other AMoC methods as well as to 3D printing in general. Subsequently, the paper will address the characteristics of 3DCP product geometry and structure, and discuss issues on parameter relations and experimental research. Finally, it will present the primary obstacles that stand between the potential of 3DCP and large-scale application in practice, and discuss the expected evolution of AMoC in general.  相似文献   

4.
ABSTRACT

Additive manufacturing (AM), commonly known as three-dimensional (3D) printing or rapid prototyping, has been introduced since the late 1980s. Although a considerable amount of progress has been made in this field, there is still a lot of research work to be done in order to overcome the various challenges remained. Recently, one of the actively researched areas lies in the additive manufacturing of smart materials and structures. Smart materials are those materials that have the ability to change their shape or properties under the influence of external stimuli. With the introduction of smart materials, the AM-fabricated components are able to alter their shape or properties over time (the 4th dimension) as a response to the applied external stimuli. Hence, this gives rise to a new term called ‘4D printing’ to include the structural reconfiguration over time. In this paper, recent major progresses in 4D printing are reviewed, including 3D printing of enhanced smart nanocomposites, shape memory alloys, shape memory polymers, actuators for soft robotics, self-evolving structures, anti-counterfeiting system, active origami and controlled sequential folding, and some results from our ongoing research. In addition, some research activities on 4D bio-printing are included, followed by discussions on the challenges, applications, research directions and future trends of 4D printing.  相似文献   

5.
6.
《工程(英文)》2020,6(11):1232-1243
Over the past 30 years, additive manufacturing (AM) has developed rapidly and has demonstrated great potential in biomedical applications. AM is a materials-oriented manufacturing technology, since the solidification mechanism, architecture resolution, post-treatment process, and functional application are based on the materials to be printed. However, 3D printable materials are still quite limited for the fabrication of bioimplants. In this work, 2D/3D AM materials for bioimplants are reviewed. Furthermore, inspired by Tai Chi, a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group. With the development of multi-material printing technology, the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.  相似文献   

7.
Abstract

Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.  相似文献   

8.
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.  相似文献   

9.
Additive manufacturing technology has been evolving for several years. New material options, better processing speeds and greater autonomy are some of the characteristics of this technology that are still under research. However, in its current state, many commercially available 3D printers are competing with traditional manufacturing techniques in the fabrication of end-use products. In this paper, different additive manufacturing technologies are compared with injection moulding in a real-world case study. The comparison is conducted in terms of lead time and total production cost. From the case under study, it becomes obvious that none of the additive manufacturing technologies examined is yet able to practically replace injection moulding for medium- and high production volumes. However, when considering low-volume production, both rapid tooling and additive manufacturing may offer an alternative that could result into shorter lead times and decreased total production costs. In addition, the introduction of Additive Manufacturing in a producer’s production portfolio can increase flexibility, reduce warehousing costs and assist the company towards the adoption of a mass customisation business strategy.  相似文献   

10.
Hierarchical self-morphing refers to the concurrent global and local changes in shape or structure. Previous research works have demonstrated 3D printed self-morphing structures and the sequential folding/unfolding behaviours. However, the shape change events occurred mainly at the global level in a water environment either through absorbing moisture or through heating. Concurrent global and local shape changes in an ambient environment have not been reported. In this paper, we report a hierarchically blooming flower that blossoms in an ambient environment. Our design considers the strain limit through understanding the effect of thickness on the local strain to avoid fracture and the appropriate allocation of multiple materials to achieve predefined global and local shape changes. This design approach of hierarchical 4D printing may be useful for a variety of applications that involve controlled self-morphing structures with complex geometries.  相似文献   

11.
Smart materials, also known as intelligent materials, which are responsive to the external stimuli including heat, moisture, stress, pH, and magnetic fields, have found extensive applications in sensors, actuators, soft robots, medical devices and artificial muscles. Using three-dimensional (3D) printing techniques for fabrication of smart devices allows for complex designs and well-controlled manufacturing processes. 4D printing is attributed to the 3D printing of smart materials that can be significantly transformed over time. Herein the smart materials including hydrogels and polymeric nanocomposites used in 4D printing were reviewed and the fundamental mechanisms responsible for the functionalities were discussed in detail. In this report, 4D printing of smart systems and their applications in sensors, actuators and biomedical devices were reviewed to provide a deeper understanding of the current development and the future outlook.  相似文献   

12.
The onset of multi-material 3D printing and the combination of smart materials into the printable material has led to the development of an exciting new technology called 4D printing. This paper will introduce the background and development into 4D printing, discuss water reactive 4D printing methods and temperature reactive 4D printing, modelling and simulation software, and future applications of this new technology. Smart materials that react to different external stimuli are described, along with the benefits of these smart materials and their potential use in 4D printing applications; specifically, existing light-reactive smart materials. 4D printing has the prospective to simplify the design and manufacturing of different products and the potential of automating actuation devices that naturally react to their environment without the need for human interaction, batteries, processors, sensors, and motors.  相似文献   

13.
3D printing of metals, such as laser powder bed fusion (LPBF) printing of stainless steels, often leads to elevated oxygen content in the alloy substrate relative to conventional processing routes. Here we show that the extremely rapid cooling rate (106–107 K/s) during LPBF processing of austenitic stainless steel can trap a considerable fraction of oxygen and other elements in the interstitial sites of the metal lattice, at concentrations far exceeding the room temperature solubilities. High resolution characterization and atomistic simulations with density functional theory reveal that oxygen and other elements exist in octahedral interstitial sites of the metal lattice and bond with their neighboring metal atoms. Our findings suggest that additive manufacturing can be a potential strategy of incorporating beneficial interstitial elements into a metal substrate. Given the well-known effect of interstitial elements in conventional alloys, significant improvement of the physicochemical properties of printed alloys is possible.  相似文献   

14.
3D打印的个性化创意设计及民主制造应用研究   总被引:2,自引:1,他引:1  
张慧姝 《包装工程》2018,39(20):201-206
目的 研究3D打印的个性化创意设计及民主制造,并预测未来的发展趋势。 方法 阐释民主制造的定义,3D打印和个性化创意设计是民主制造的重要手段。使用信息设计方法揭示个人喜好与个性化创意设计的关联模式,使千差万别的个体实现创意设计,形成广大民众的民主制造。 结论 3D打印的个性化创意设计和民主制造进一步提高全球的工作效率,民主制造将得到普及,大规模的集成制造越来越被数以万计的家庭和个体制造所取代,零散的以节点的形式分布在云平台上,实现云制造。  相似文献   

15.
牛一帆 《塑料包装》2014,25(5):22-25
3D打印技术是将三维数字模型分解成若干层平面切片,然后由3D打印机把粉末状、液状或丝状可粘合材料按切片图形逐层叠加,最终堆积成完整物体的技术。文章对3D打印的技术原理、步骤、常用材料、主要技术、发展及建议进行了深层次的探讨。与传统制造技术相比,3D打印技术有很多优势,目前已广泛应用于建筑、工业设计等领域。该技术将会带来全球制造业经济的重大变革。  相似文献   

16.
为解决传统三轴打印在曲面领域制备能力不足的瓶颈,克服阶梯效应等缺陷,本文设计研发了一种基于多自由度机械臂的直写式3D打印平台,并采用硅橡胶材料开展打印实验,系统研究了喷头打印角度对线条几何形状和多层线条成型效果的影响,最终制备出高保形性的结构样品。研究表明:改变喷头引导角进行打印时,随着喷头引导角度的增大,硅泡沫线条宽度的一致性更高,且引导角大于0°时所打印的线条横截面形状规则,多层结构的成型效果良好,并可改善大跨距下的线条塌陷问题。本文实验结果揭示了打印高保形性硅泡沫的多角度工艺规律,与传统的竖直方向或法线方向相比,喷头引导角大于0°时打印的硅泡沫结构保形性更高,可为曲面传感器、共形天线等对保形性要求较高的应用场合提供借鉴指导。  相似文献   

17.
ABSTRACT

Astonishingly 3D printing has excited the world of aerospace. This paper takes stock of the popular 3D printing processes in aerospace. Reasons for their popularity over the traditional manufacturing processes are dwelled upon. Materials developed specially for aerospace applications along with their characteristics are discussed. Ongoing activities related to 3D printing at various companies and organisations around the world are looked into. Project works in the area of extra-terrestrial printing are also highlighted. Even though 3D printing processes are operationally simple, they do have limitations in terms of the type, quality, and quantity of the materials they can handle. This paper underlines these points while discussing drawbacks of the printed components. Challenges associated with 3D printing in microgravity are also touched upon. Finally, a glimpse is taken into the future appearance of aerospace industry with 3D printing.  相似文献   

18.
While previous research on polycaprolactone (PCL) and polyethylene glycol (PEG) triblock copolymers has focused on their use as hydrogels or with conventional scaffold fabrication methods, this work concentrates on producing viable photocurable resins from synthesized triblocks for use in a layer-by-layer 3D printer. After successful synthesis of PCL-PEG-PCL and PCL-PEG-PCL-diacrylate triblocks, they were combined with (hydroxyethyl)methacrylated polyethylene glycol (PEG-HEMA) and used as biomaterials in a dynamic masking 3D printing system to fabricate porous scaffolds. Diacrylation of the polymer (PCL-PEG-PCL-DA) revealed a substantial increase in mechanical strength and resulting compound resolved the re-dissolving issue significantly during the 3D printing process. Degradation tests were carried out by incubation in phosphate-buffered saline, and both biomaterials demonstrated their degradation resistance with steady pH levels and mass loss plateauing at 20% over a sixty day timeframe. Preliminary MG63 cell culture tests on the cross-linked 3D porous structures showed no significant cytotoxicity and MTT assay data verified cell proliferation on the photocured samples after three days. As a result, end-capping PCL-PEG-PCL with acrylates demonstrated advantages over PCL-PEG-PCL while keeping similar performance in degradation and biocompatibility. Overall results from this work demonstrate the suitability of the novel triblocks for use as biomaterials in tissue engineering scaffolds.  相似文献   

19.
3维打印用聚乳酸材料的改性研究进展   总被引:1,自引:0,他引:1  
聚乳酸材料具有环保可生物降解性的优点,故其经常作为3维(3D)打印的原材料使用,然而其自身的脆性大、玻璃化温度低和热稳定性差等缺点,限制了该类材料的进一步应用和推广。所以对聚乳酸进行改性研究,改善它的力学性能或者耐热性能,从而扩大其在3D打印领域的应用具有很重要的研究意义。综述了聚乳酸材料的改性方法以及相关研究进展,主要从物理改性和化学改性等两类改性方法来分析聚乳酸改性的研究现状,总结分析了两类改性方法面临的问题并展望其前景,还对改性后的聚乳酸材料的应用进展进行总结与展望。  相似文献   

20.
3D打印发展背景下三维建模软件变革趋势分析   总被引:1,自引:1,他引:0  
尹虎 《包装工程》2017,38(6):182-186
目的作为3D打印重要的辅助工具,现有三维建模软件针对专业用户开发设计,并不适用于普通用户。分析三维建模软件的变革趋势,目的在于让普通用户更方便地使用3D打印设备。方法采用实例分析方法,对具有代表性的三维建模软件进行分析。结论提出面向普通用户的三维建模软件开发思路,包括操作界面图形符号化、信息架构扁平化、建模功能智能化以及基于浏览器的三维建模软件服务平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号