首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this paper, we consider risk‐sensitive optimal control and differential games for stochastic differential delayed equations driven by Brownian motion. The problems are related to robust stochastic optimization with delay due to the inherent feature of the risk‐sensitive objective functional. For both problems, by using the logarithmic transformation of the associated risk‐neutral problem, the necessary and sufficient conditions for the risk‐sensitive maximum principle are obtained. We show that these conditions are characterized in terms of the variational inequality and the coupled anticipated backward stochastic differential equations (ABSDEs). The coupled ABSDEs consist of the first‐order adjoint equation and an additional scalar ABSDE, where the latter is induced due to the nonsmooth nonlinear transformation of the adjoint process of the associated risk‐neutral problem. For applications, we consider the risk‐sensitive linear‐quadratic control and game problems with delay, and the optimal consumption and production game, for which we obtain explicit optimal solutions.  相似文献   

2.
In this paper, we consider an optimal control problem for the stochastic system described by stochastic differential equations with delay. We obtain the maximum principle for the optimal control of this problem by virtue of the duality method and the anticipated backward stochastic differential equations. Our results can be applied to a production and consumption choice problem. The explicit optimal consumption rate is obtained.  相似文献   

3.
    
In this paper, we deal with a new kind of partially observed nonzero‐sum differential game governed by stochastic differential delay equations. One of the special features is that the controlled system and the utility functionals involve both delays in the state variable and the control variables under different observation equations for each player. We obtain a maximum principle and a verification theorem for the game problem by virtue of Girsanov's theorem and the convex variational method. In addition, based on the theoretical results and Malliavin derivative techniques, we solve a production and consumption choice game problem.  相似文献   

4.
ABSTRACT

In this paper, we introduce a new class of backward doubly stochastic differential equations (in short BDSDE) called mean-field backward doubly stochastic differential equations (in short MFBDSDE) driven by Itô-Lévy processes and study the partial information optimal control problems for backward doubly stochastic systems driven by Itô-Lévy processes of mean-field type, in which the coefficients depend on not only the solution processes but also their expected values. First, using the method of contraction mapping, we prove the existence and uniqueness of the solutions to this kind of MFBDSDE. Then, by the method of convex variation and duality technique, we establish a sufficient and necessary stochastic maximum principle for the stochastic system. Finally, we illustrate our theoretical results by an application to a stochastic linear quadratic optimal control problem of a mean-field backward doubly stochastic system driven by Itô-Lévy processes.  相似文献   

5.
This paper investigates a stochastic optimal control problem with delay and of mean-field type, where the controlled state process is governed by a mean-field jump–diffusion stochastic delay differential equation. Two sufficient maximum principles and one necessary maximum principle are established for the underlying system. As an application, a bicriteria mean–variance portfolio selection problem with delay is studied to demonstrate the effectiveness and potential of the proposed techniques. Under certain conditions, explicit expressions are provided for the efficient portfolio and the efficient frontier, which are as elegant as those in the classical mean–variance problem without delays.  相似文献   

6.
In this paper we prove necessary conditions for optimality of a stochastic control problem for a class of stochastic partial differential equations that is controlled through the boundary. This kind of problem can be interpreted as a stochastic control problem for an evolution system in a Hilbert space. The regularity of the solution of the adjoint equation, that is a backward stochastic equation in infinite dimension, plays a crucial role in the formulation of the maximum principle.  相似文献   

7.
    
The aim of this paper is to investigate the existence of optimal controls for systems described by stochastic partial differential equations (SPDEs) with locally monotone coefficients controlled by external forces which are feedback controls. To attain our objective we adapt the argument of Lisei (2002) where the existence of optimal controls to the stochastic Navier–Stokes equation was studied. The results obtained in the present paper may be applied to demonstrate the existence of optimal controls to various types of controlled SPDEs such as: a stochastic nonlocal equation and stochastic semilinear equations which are locally monotone equations; we also apply the result to a monotone equation such as the stochastic reaction–diffusion equation and to a stochastic linear equation.  相似文献   

8.
This paper is concerned with the existence and uniqueness of solution for the optimal control problem governed by the stochastic FitzHugh–Nagumo equation driven by a Gaussian noise. First-order conditions of optimality are also obtained.  相似文献   

9.
This paper focuses on a general model of a controlled stochastic differential equation with mixed delay in the state variable. Based on the Itô formula, stochastic analysis, convex analysis, and inequality technique, we obtain a semi‐coupled forward‐backward stochastic differential equation with mixed delay and mixed initial‐terminal conditions and prove that such forward‐backward system admits a unique adapted solution. The verification theorem for an optimal control of a system with mixed delay is established. The obtained results generalize and improve some recent results, and they are more easily verified and applied in practice. As an application, we conclude with finding explicitly the optimal consumption rate from the wealth process of a person given by a stochastic differential equation with mixed delay which fit into our general model.  相似文献   

10.
We consider the second-order Taylor expansion for backward doubly stochastic control system. The results are obtained under no restriction on the convexity of control domain. Moreover, the control variable is allowed in the drift coefficient and the diffusion coefficient.  相似文献   

11.
    
In this paper, we study a new type of differential game problems of backward stochastic differential delay equations under partial information. A class of time‐advanced stochastic differential equations (ASDEs) is introduced as the adjoint process via duality relation. By means of ASDEs, we suggest the necessary and sufficient conditions called maximum principle for an equilibrium point of non‐zero sum games. As an application, an economic problem is putted into our framework to illustrate the theoretical results. In terms of the maximum principle and some auxiliary filtering results, an equilibrium point is obtained.  相似文献   

12.
    
A new approach to study the indefinite stochastic linear quadratic (LQ) optimal control problems, which we called the “equivalent cost functional method”, is introduced by Yu (2013) in the setup of Hamiltonian system. On the other hand, another important issue along this research direction, is the possible state feedback representation of optimal control and the solvability of associated indefinite stochastic Riccati equations. As the response, this paper continues to develop the equivalent cost functional method by extending it to the Riccati equation setup. Our analysis is featured by its introduction of some equivalent cost functionals which enable us to have the bridge between the indefinite and positive-definite stochastic LQ problems. With such bridge, some solvability relation between the indefinite and positive-definite Riccati equations is further characterized. It is remarkable the solvability of the former is rather complicated than the latter, hence our relation provides some alternative but useful viewpoint. Consequently, the corresponding indefinite linear quadratic problem is discussed for which the unique optimal control is derived in terms of state feedback via the solution of the Riccati equation. In addition, some example is studied using our theoretical results.  相似文献   

13.
14.
吴臻  王向荣 《自动化学报》2003,29(6):821-826
给出一类布朗运动和泊松过程混合驱动的正倒向随机微分方程解的存在唯一性结果,应用这一结果研究带有随机跳跃干扰的线性二次随机最优控制问题,并得到最优控制的显式形式,可以证明最优控制是唯一的.然后,引入和研究一类推广的黎卡提方程系统,讨论该方程系统的可解性并由该方程的解得到带有随机跳跃干扰的线性二次随机最优控制问题最优的线性反馈.  相似文献   

15.
The present study deals with a new approach of optimal control problems where the state equation is a Mean-Field stochastic differential equation, and the set of strict (classical) controls need not be convex and the diffusion coefficient depends on the term control. Our consideration is based on only one adjoint process, and the necessary conditions as well as a sufficient condition for optimality in the form of a relaxed maximum principle are obtained, with application to Linear quadratic stochastic control problem with mean-field type.  相似文献   

16.
    
In this study, we propose a varying terminal time structure for the optimal control problem under state constraints, in which the terminal time follows the varying of the control via the constrained condition. Focusing on this new optimal control problem, we investigate a novel stochastic maximum principle, which differs from the traditional optimal control problem under state constraints. The optimal pair of the optimal control model can be verified via this new stochastic maximum principle.  相似文献   

17.
We consider a stochastic control problem with linear dynamics with jumps, convex cost criterion, and convex state constraint, in which the control enters the drift, the diffusion, and the jump coefficients. We allow these coefficients to be random, and do not impose any Lp-bounds on the control.

We obtain a stochastic maximum principle for this model that provides both necessary and sufficient conditions of optimality. This is the first version of the stochastic maximum principle that covers the consumption–investment problem in which there are jumps in the price system.  相似文献   


18.
    
In this paper, we establish a second-order stochastic maximum principle for optimal stochastic control of stochastic differential equations of general mean-field type. The coefficients of the system are nonlinear and depend on the state process as well as of its probability law. The control variable is allowed to enter into both drift and diffusion terms. We establish a set of second-order necessary conditions for the optimal control in integral form. The control domain is assumed to be convex. The proof of our main result is based on the first- and second-order derivatives with respect to the probability law and by using a convex perturbation with some appropriate estimates.  相似文献   

19.
    
This paper deals with the risk‐sensitive control problem for mean‐field stochastic delay differential equations (MF‐SDDEs) with partial information. Firstly, under the assumptions that the control domain is not convex and the value function is non‐smooth, we establish a stochastic maximum principle (SMP). Then, by means of Itô's formula and some continuous dependence, we prove the existence and uniqueness results for another type of MF‐SDDEs. Meanwhile, the verification theorem for the MF‐SDDEs is obtained by using a clever construction of the Hamiltonian function. Finally, based on our verification theorem, a linear‐quadratic system is investigated and the optimal control is also derived by the stochastic filtering technique.  相似文献   

20.
本文研究了g-期望下的部分可观测非零和随机微分博弈系统,该系统的状态方程由It?-Lévy过程驱动,成本函数由g-期望描述.根据Girsanov定理和凸变分技巧,本文得到了最大值原理和验证定理.为对所获结果进行说明,本文讨论了关于资产负债管理的博弈问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号