首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In vehicular radar servo system, parameter variations of the executive motor and external disturbance uncertainties have great effects on the position tracking precision of the system. In this paper, a robust adaptive controller with disturbance observer is designed for vehicular radar servo system, which combines the merits of disturbance observer, adaptive backstepping method and sliding mode control. The system is modeled, and a disturbance observer is employed to observe and compensate for the unknown uncertainties. Adaptive backstepping method is used to design the sliding model controller to guarantee the global stability of the overall system. Simulation results show that the proposed robust adaptive controller has good performance in position tracking and enhances the robustness of vehicular radar servo system while observing the uncertainties precisely and quickly.  相似文献   

2.
This paper studies the problem of adaptive control for a class of nonlinear time-varying discrete-time systems with nonparametric uncertainties. The plant parameters considered here are not necessarily slowly time-varying in a uniform way. They are allowed to have a finite number of big jumps. By using the backstepping procedures with parameter projection update laws, a robust adaptive controller can be designed to achieve adaptive tracking of a reference signal for this class of systems. It is shown that the proposed controller can guarantee the global boundedness of the states of the whole adaptive system in the presence of parametric and nonparametric uncertainties. It can also ensure that the tracking error falls within a compact set whose size is proportional to the size of the uncertainties and disturbances. In the ideal case when there is no nonparametric uncertainties and time-varying parameters, perfect tracking can be achieved  相似文献   

3.
一类不确定非线性系统的鲁棒自适应控制   总被引:10,自引:1,他引:9  
针对一类具有一般不确定性和未知参数的非线性系统,设计出一种适用于输出跟踪 的鲁棒自适应控制器.该控制器对系统的参数和状态的不确定性具有鲁棒性,能保证闭环系 统的全局稳定性,并解决了ε-跟踪问题.仿真实例表明,所设计的鲁棒自适应控制器具有良好 的跟踪性能.  相似文献   

4.
The recently proposed saturated adaptive robust controller is integrated with desired trajectory compensation to achieve global stability with much improved tracking performance. The algorithm is tested on a linear motor drive system which has limited control effort and is subject to parametric uncertainties, unmodeled nonlinearities, and external disturbances. Global stability is achieved by employing back-stepping design with bounded (virtual) control input in each step. A guaranteed transient performance and final tracking accuracy is achieved by incorporating the well-developed adaptive robust controller with effective parameter identifier. Signal noise that affects the adaptation function is alleviated by replacing the noisy velocity signal with the cleaner position feedback. Furthermore, asymptotic output tracking can be achieved when only parametric uncertainties are present.  相似文献   

5.
In this paper, a stable adaptive fuzzy-based tracking control is developed for robot systems with parameter uncertainties and external disturbance. First, a fuzzy logic system is introduced to approximate the unknown robotic dynamics by using adaptive algorithm. Next, the effect of system uncertainties and external disturbance is removed by employing an integral sliding mode control algorithm. Consequently, a hybrid fuzzy adaptive robust controller is developed such that the resulting closed-loop robot system is stable and the trajectory tracking performance is guaranteed. The proposed controller is appropriate for the robust tracking of robotic systems with system uncertainties. The validity of the control scheme is shown by computer simulation of a two-link robotic manipulator.  相似文献   

6.
This paper considers the tracking problem of a delayed uncertain first‐order system which is simultaneously subject to (possibly large) known input delay, unknown but bounded time‐varying disturbance, and unknown plant parameter. The proposed predictor adaptive robust controller (PARC) involves prediction‐based projection type adaptation laws with model compensation and prediction‐based continuous robust feedback such that the closed loop system has global exponential convergence with an ultimate bound proportional to delay, disturbance bound, and switching gain. Further, if there are only delay and parameter uncertainties after some finite time, then semi‐global asymptotic tracking is guaranteed. The proposed design is shown to have significant closed loop performance improvement over the baseline controller.  相似文献   

7.
研究了非线性系统的跟踪控制问题,基于HM模型对非线性系统进行描述,并将全局模糊模型表示成不确定系统形式。在满足匹配条件下,针对未知不确定界,采用自适应鲁棒控制器,利用自适应变量信息来补偿系统的不确定性信息,实现了非线性系统的渐近跟踪控制。一级倒立摆仿真实验,验证了方案的有效性。控制器结构简单,规则少,具有应用价值。  相似文献   

8.
针对参数不确定的轮式移动机器人的轨迹跟踪问题,设计自适应跟踪控制器.基于移动机器人的动力学模型,采用backstepping积分方法,通过逐步递推选择适当的Lyapunov函数,设计基于状态反馈的自适应控制器,并进行了相应的稳定性分析.与传统PID控制进行仿真对比,结果表明提出的自适应控制策略能较好地补偿系统参数摄动的影响,提高了移动机器人的轨迹跟踪性能和鲁棒性.  相似文献   

9.
This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties. The control objective is to let the helicopter track some pre-defined position and yaw trajectories. In order to facilitate the control design, we divide the helicopter's dynamic model into three subsystems. The proposed controller combines the backstepping method with online parameter update laws to achieve the control objective. The global asymptotical stability (GAS) of the closed-loop system is proved by a Lyapunov based stability analysis. Numerical simulations demonstrate that the controller can achieve good tracking performance in the presence of parametric uncertainties.   相似文献   

10.
本文针对含参数不确定性的多电机驱动系统,提出一种基于最优保性能鲁棒的Funnel控制方法实现系统的规定跟踪性能.该控制方法通过构造Funnel函数对误差系统进行变换,并设计自适应反步控制器保证变换后系统的稳定性即可使跟踪误差的瞬态和稳态响应均被限制在给定的Funnel边界内.然而由于系统中存在的参数不确定性会影响系统的规定控制性能,本文在Funnel控制基础上又设计了最优保性能鲁棒控制器.它是通过将参数不确定性系统的保性能鲁棒控制问题转化为标称系统的最优控制问题,并求解新的黎卡提方程而得到的.因此所设计的控制器不但消除了参数不确定性对系统的影响并且能够使系统的性能指标达到一确定的上界.最后,对四电机驱动系统进行了仿真和实验验证,说明所提出控制方法的有效性.  相似文献   

11.
针对一类同时具有参数及非参数不确定性的自由漂浮空间机器人系统的轨迹跟踪问题,采用了一种RBF神经网络的自适应鲁棒补偿控制策略.对于系统的参数不确定性,通过对径向基神经网络来自适应学习并补偿,逼近误差通过滑模控制器消除,神经网络权重的自适应修正规则基于Lyapunov函数方法得到;而非参数不确定通过鲁棒控制器来实时自适应...  相似文献   

12.
在非完整移动机器人轨迹跟踪问题中,针对机器人运动学与动力学模型的参数和非参数不确定性,提出了一种混合神经网络鲁棒自适应轨迹跟踪控制器,该控制器由运动学控制器和动力学控制器两部分组成;其中,采用了参数自适应的径向基神经网络对运动学模型的未知部分进行了建模,并采用权值在线调整的单层神经网络和自适应鲁棒控制项构成了动力学控制器;基于Lyapunov方法的设计过程保证了系统的稳定性和收敛性,仿真结果证明了算法的有效性。  相似文献   

13.
具有柔性关节的轻型机械臂因其自重轻、响应迅速、操作灵活等优点,取得了广泛应用;针对具有柔性关节的机械臂系统的关节空间轨迹跟踪控制系统动力学参数不精确的问题,提出一种结合滑模变结构设计的自适应控制器算法;通过自适应控制的思想对系统动力学参数进行在线辨识,并采用Lyapunov方法证明了闭环系统的稳定性;仿真结果表明,该控制策略保证了机械臂系统对期望轨迹的快速跟踪,具有良好的跟踪精度,系统具有稳定性。  相似文献   

14.
This study deals with the problem of robust adaptive fault‐tolerant tracking for uncertain systems with multiple delayed state perturbations, mismatched parameter uncertainties, external disturbances, and actuator faults including loss of effectiveness, outage, and stuck. It is assumed that the upper bounds of the delayed state perturbations, the external disturbances and the unparameterizable time‐varying stuck faults are unknown. Then, by estimating online such unknown bounds and on the basis of the updated values of these unknown bounds from the adaptive mechanism, a class of memoryless state feedback fault‐tolerant controller with switching signal function is constructed for robust tracking of dynamical signals. Furthermore, by making use of the proposed adaptive robust tracking controller, the tracking error can be guaranteed to be asymptotically zero in spite of multiple delayed state perturbations, mismatched parameter uncertainties, external disturbances, and actuator faults. In addition, it is also proved that the solutions with tracking error of resulting adaptive closed‐loop system are uniformly bounded. Finally, a simulation example for B747‐100/200 aircraft system is provided to illustrate the efficiency of the proposed fault‐tolerant design approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.  相似文献   

16.
The aim of this paper is to improve the tracking performance of a robotic manipulator by designing an adaptive controller and implementing it on the system. The proposed controller guarantees the system stability as well as good tracking performance in existence of nonlinearity and parameter uncertainties. The requirement to decrease the system response overshoot and steady state error as well as increasing speed of tracking for manipulators is essential to many manufacturers. To this mean, in this paper, the tracking error equations for an n-DOF manipulator are derived and the response characteristics are improved by augmenting a new state to the system equations. The stability of the closed-loop system is guaranteed based on the Lyapunov theory via backstepping control approach. The robotic manipulator model contains parametric uncertainties and many of the parameter values are unknown. To solve the problem, an adaption law is proposed via adaptive backstepping mechanism. Different experiments are carried out for a 2-DOF manipulator to show the effectiveness of the proposed approach and the results are compared with four of the recently revealed researches on control. Experimental results present the superiority of the state augmented adaptive backstepping in tracking the desired joint angles. Moreover, in order to present the industrial application of the proposed control method, it is simulated for a large industrial Scara manipulator.  相似文献   

17.
变稳控制是直升机飞行模拟的关键技术之一, 气动参数的不确定性是其设计的困难所在. 对此, 提出了利用双目标直升机模型构造原型直升机的强跟踪自适应变稳控制器, 它将强跟踪的反馈补偿机构和自适应控制参数设计相分离, 简化了控制设计, 同时实现了提高自适应参数修正过程的系统稳定裕度和显著降低跟踪误差的目的. 仿真实验结果验证了所提出方法的有效性和可行性.  相似文献   

18.
A robust tracking control design of robot systems including motor dynamics with parameter perturbation and external disturbance is proposed in this study via adaptive fuzzy cancellation technique. A minimax controller equipped with a fuzzy-based scheme is used to enhance the tracking performance in spite of system uncertainties and external disturbance. The design procedure is divided into three steps. At first, a linear nominal robotic control design is obtained via model reference tracking with desired eigenvalue assignment. Next, a fuzzy logic system is constructed and then tuned to eliminate the nonlinear uncertainties as possibly as it can to enhance the tracking robustness. Finally, a minimax control scheme is specified to optimally attenuate the worst-case effect of both the residue due to fuzzy cancellation and external disturbance to achieve a minimax tracking performance. In addition, an adaptive fuzzy-based dynamic game theory is introduced to solve the minimax tracking problem. The proposed method is appropriate for the robust tracking design of robotic systems with large parameter perturbation and external disturbance. A simulation example of a two-link robotic manipulator driven by DC motors is also given to demonstrate the effectiveness of proposed design method's tracking performance  相似文献   

19.
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.   相似文献   

20.
In this study, a dynamical adaptive integral backstepping variable structure control (DAIBVSC) system based on the Lyapunov stability theorem is proposed for the trajectory tracking control of a nonlinear uncertain mechatronic system with disturbances. In this control scheme, no prior knowledge is required on the uncertain parameters and disturbances because it is estimated by two types of dynamical adaptive laws. These adaptive laws are integrated into the dynamical adaptive integral backstepping control and variable structure control (VSC) parts of the DAIBVSC. The dynamical adaptive law in the dynamical adaptive integral backstepping control part updates parametric uncertainties, while the other in the VSC part adapts upper bounds of non‐parametric uncertainties and disturbances. In order to achieve a more robust output tracking and better parameter adaptation, the control system is extended by one integrator and sliding surface is augmented by an integral action. Experimental evaluation of the DAIBVSC is conducted with respect to performance and robustness to parametric uncertainties. Experimental results of the DAIBVSC are compared with those of a traditional VSC. The proposed DAIBVSC exhibits satisfactory output tracking performance, good estimation of the uncertain parameters and can reject disturbances with a chattering free control law. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号