首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, Industry 4.0 has emerged as one of the most discussed concepts and has gained significant popularity in both academia and the industrial sector. Both Industry 4.0 and lean manufacturing utilise decentralised control and aim to increase productivity and flexibility. However, there have been few studies investigating the link between these two domains. This article explores this novel area and maps the current literature. This is achieved through a systematic literature review methodology, investigating literature published up to and including August 2017. This article identifies four main research streams concerning the link between Industry 4.0 and lean manufacturing, and a research agenda for future studies is proposed.  相似文献   

2.
Over the last few years, the fourth industrial revolution has attracted more and more attentions all around the world. In the current literature, there is still a lack of efforts to systematically review the state of the art of this new industrial revolution wave. The aim of this study is to address this gap by investigating the academic progresses in Industry 4.0. A systematic literature review was carried out to analyse the academic articles within the Industry 4.0 topic that were published online until the end of June 2016. In this paper, the obtained results from both the general data analysis of included papers (e.g. relevant journals, their subject areas and categories, conferences, keywords) and the specific data analysis corresponding to four research sub-questions are illustrated and discussed. These results not only summarise the current research activities (e.g. main research directions, applied standards, employed software and hardware), but also indicate existing deficiencies and potential research directions through proposing a research agenda. Findings of this review can be used as the basis for future research in Industry 4.0 and related topics.  相似文献   

3.
Using the theory of human blood circulation system, the authors explore the importance of remanufacturing in Industry 4.0. In this paper, they draw analogies between smart factory and human heart, between smart products and blood, and, between product function and nutrition and oxygen in the blood. Remanufacturing is analogous to the ingestion of oxygen and nutrition in lesser circulation or systemic circulation. Remanufacturing well supports recycling production, which is significant in realizing intelligent industry. Furthermore, this paper discusses the development direction of remanufacturing engineering in Industry 4.0 ages.  相似文献   

4.
5.
The development of science and technology has led to the era of Industry 4.0. The core concept is the combination of “material and informationization”. In the supply chain and manufacturing process, the “material” of the physical entity world is realized by data, identity, intelligence, and information. Industry 4.0 is a disruptive transformation and upgrade of intelligent industrialization based on the Internet-of-Things and Big Data in traditional industrialization. The goal is “maximizing production efficiency, minimizing production costs, and maximizing the individual needs of human beings for products and services.” Achieving this goal will surely bring about a major leap in the history of the industry, which will lead to the “Fourth Industrial Revolution.” This paper presents a detailed discussion of industrial big data, strategic roles, architectures, characteristics, and four types of innovative business models that can generate profits for enterprises. The key revolutionary aspect of Industry 4.0 is explained, which is the equipment revolution. Six important attributes of equipment are explained under the Industry 4.0 perspective.  相似文献   

6.
Industry 4.0 (I4.0) and Circular Economy (CE) are undoubtedly two of the most debated topics of the last decades. Progressively, they gained the interest of policymakers, practitioners and scholars all over the world. Even if they have been usually described as two independent research fields, there are some examples presenting overlaps between these topics, represented by hybrid categories like Circular I4.0 and Digital CE. Starting from these two perspectives, an innovative framework both highlighting the links between I4.0 and CE and unveiling future research fields has been developed. Basing on one of the two perspectives, results show as it is possible to enhance a set of different relations. Depending on a dedicated area of either CE or I4.0 it is possible to see the prevalence of some I4.0 technology than others. However, the influence of I4.0 technologies on CE is always verified.  相似文献   

7.
The adoption of Industry 4.0 technologies has been deemed as a strategy to increase product quality and make manufacturing processes more efficient. However, the way that these technologies are integrated into existing production systems and which processes they can support is still under investigation. Thus, this paper aims to examine the relationship between lean production (LP) practices and the implementation of Industry 4.0 in Brazilian manufacturing companies. To achieve that we use data from a survey carried out with 110 companies of different sizes and sectors, at different stages of LP implementation. Data collected were analysed by means of multivariate analysis. Our findings indicate that LP practices are positively associated with Industry 4.0 technologies and their concurrent implementation leads to larger performance improvements. Further, the contextual variables investigated do matter to this association, although not all aspects matter to the same extent and effect.  相似文献   

8.
This research employed a qualitative approach to discuss the current practice and challenges of Malaysian manufacturing firms in the implementation of Industry 4.0. The study examined data from seven manufacturing companies pursuing Industry 4.0 initiatives to identify various options for their strategies. The study found that the implementation of Industry 4.0 in the manufacturing firms is still in the exploratory stage. The companies involved in this study were discovered to conduct exploration using an adaptive-like framework. That is, throughout the process, the majority of the subjects are 'trying and adding' Industry 4.0 to their operations. Their trial-and-error approach is based on what is feasible and effective in their manufacturing environment. Overall, the investigation determined that data management and integration, as well as personnel re-education, were the respondents' primary operational challenges.  相似文献   

9.
Research in industry 4.0 is growing, driven by the innovations in production systems on a continuous basis. In this study, we identified the evolution of themes inherent in the industry 4.0 using a bibliometric software, namely SciMAT (Science Mapping Analysis Software Tool). The analyses included 1882 documents, 4231 keywords, and the relevant information was extracted based on frequency of co-occurrence of keywords. The clusters were plotted in two-dimensional strategic diagrams and analysed using the bibliometric indicators such as the number of publications, number of associated documents, and h-index. The results revealed that 2017 had the largest number of publications. Expert authors in the field and the periodicals that published the most were identified. The science mapping presented 31 clusters in which the most representative motor themes were CPS (Cyber-Physical System), IoT (Internet of Things), and Big Data. In addition, it was possible to identify fields with high investment of efforts by the scientific community such as the union between lean production and industry 4.0, production-centered CPS (CPPS), IoT (Industrial Internet of Things - IIoT), among others. The overlapping map showed an increase in the number of keywords from 338 to 1231 over the period of data. The map of scientific developments supported by an exhaustive research, it was possible to show the state of the art, the main challenges and perspectives for future research in the field of industry 4.0 such as Technology, Collaboration/Integration, Management and Implementation.  相似文献   

10.
Notwithstanding its disruptive potential, which has been the object of considerable debate, Industry4.0 (I4.0) operationalisation still needs significant study. Specifically, scheduling is a key process that should be explored from this perspective. The purpose of this study is to shed light on the issues regarding scheduling that need to be considered in the new I4.0 framework. To achieve this, a two-stage cascade literature review is performed. The review begins with an analysis regarding the opportunities and challenges brought by I4.0 to the scheduling field, outputting a set of critical scheduling areas (CSA) in which development is essential. The second-stage literature review is performed to understand which steps have been taken so far by previous research in the scheduling field to address those challenges. Thus, a first contribution of this work is to provide insight on the influence and expected changes brought by I4.0 to scheduling, while showcasing relevant research. Another contribution is to identify the most promising future lines of research in this field, in which relevant challenges such as holistic scheduling, or increased flexibility requirements are highlighted. Concurrently, CSA such as decentralised decision-making, and human–robot collaboration display large gaps between current practice and the required technological level of development.  相似文献   

11.
The current literature claims the direct effects of industry 4.0 technologies (I4?T) on lean manufacturing practices (LMP) and sustainable organisational performance (SOP). LMP are also found to have a positive influence on SOP. However, the integrated effect of I4?T and LMP on SOP has not been empirically investigated. To address this gap, this research study investigates the indirect effects of I4?T on SOP with LMP as the mediating variable; furthermore, it aims to confirm or not the direct effects of I4?T on LMP and SOP. The study is based on data collected from 205 managers, working in 115 manufacturing firms. The findings suggest significant direct and indirect effects of I4?T on SOP and confirm the presence of LMP as a strong mediating variable. The results of the study extend the literature on I4?T by identifying I4?T as an enabler of LMP, leading to enhancement of the SOP. Implications and future research directions for academicians, practitioners, and consultants are provided.  相似文献   

12.
We draw on cognitive and behavioural theories and on the artificial intelligence literature in order to propose a framework of future operator – workstation interaction in the ‘Industry 4.0’ era. We name the proposed framework ‘Operator – Workstation Interaction 4.0’. The latter’s capabilities permit an adaptive, ongoing interaction that aims to improve operator safety, performance, well-being, and satisfaction as well as the factory’s production measures. The framework is composed of three subsystems: (1) the observation subsystem which observes the operator and the processes occurring in the workstation, (2) the analysis subsystem which generates understanding and implications of the observations output, (3) the reaction subsystem which determines if and how to respond. The paper describes these elements and illustrate them using an example of a fatigued worker. The contributions, implications, and limitations of the proposed framework are discussed, and future research directions are presented.  相似文献   

13.
《工程(英文)》2017,3(5):616-630
Our next generation of industry—Industry 4.0—holds the promise of increased flexibility in manufacturing, along with mass customization, better quality, and improved productivity. It thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. Intelligent manufacturing plays an important role in Industry 4.0. Typical resources are converted into intelligent objects so that they are able to sense, act, and behave within a smart environment. In order to fully understand intelligent manufacturing in the context of Industry 4.0, this paper provides a comprehensive review of associated topics such as intelligent manufacturing, Internet of Things (IoT)-enabled manufacturing, and cloud manufacturing. Similarities and differences in these topics are highlighted based on our analysis. We also review key technologies such as the IoT, cyber-physical systems (CPSs), cloud computing, big data analytics (BDA), and information and communications technology (ICT) that are used to enable intelligent manufacturing. Next, we describe worldwide movements in intelligent manufacturing, including governmental strategic plans from different countries and strategic plans from major international companies in the European Union, United States, Japan, and China. Finally, we present current challenges and future research directions. The concepts discussed in this paper will spark new ideas in the effort to realize the much-anticipated Fourth Industrial Revolution.  相似文献   

14.
This study aims to identify and analyse factors that determine the implementation of Information and Digital Technologies (IDT) of smart manufacturing. By performing a state-of-the-art and content-driven review of literature, consulting a group of experts from academia and industry, and implementing interpretive structural modelling methodology, the study identified eleven enabling factors and mapped the contextual interrelationships among them. The study further explained the complex precedence relationships that exist among determinants of smart manufacturing IDT adoption. Results showed that perceived benefits and management support are the two driver determinants that act as stepping-stones in the implementation of smart manufacturing IDT. Operations technology maturity and cybersecurity maturity were found to be the dependent determinants of smart manufacturing IDT implementation and highly driven by the linkage and driver determinates. The findings are expected to assist academicians, industrialists, and the policymakers with achieving a detailed understanding of smart manufacturing transformation processes, and conditions that facilitate the manufacturing digitalisation in the Industry 4.0 era.  相似文献   

15.
Rapid advances in industrialisation and informatisation methods have spurred tremendous progress in developing the next generation of manufacturing technology. Today, we are on the cusp of the Fourth Industrial Revolution. In 2013, amongst one of 10 ‘Future Projects’ identified by the German government as part of its High-Tech Strategy 2020 Action Plan, the Industry 4.0 project is considered to be a major endeavour for Germany to establish itself as a leader of integrated industry. In 2014, China’s State Council unveiled their ten-year national plan, Made-in-China 2025, which was designed to transform China from the world’s workshop into a world manufacturing power. Made-in-China 2025 is an initiative to comprehensively upgrade China’s industry including the manufacturing sector. In Industry 4.0 and Made-in-China 2025, many applications require a combination of recently emerging new technologies, which is giving rise to the emergence of Industry 4.0. Such technologies originate from different disciplines including cyber-physical Systems, IoT, cloud computing, Industrial Integration, Enterprise Architecture, SOA, Business Process Management, Industrial Information Integration and others. At this present moment, the lack of powerful tools still poses a major obstacle for exploiting the full potential of Industry 4.0. In particular, formal methods and systems methods are crucial for realising Industry 4.0, which poses unique challenges. In this paper, we briefly survey the state of the art in the area of Industry 4.0 as it relates to industries.  相似文献   

16.
Additive Manufacturing (AM) requires integrated networking, embedded controls and cloud computing technologies to increase their efficiency and resource utilisation. However, currently there is no readily applicable system that can be used for cloud-based AM. The objective of this research is to develop a framework for designing a cyber additive manufacturing system that integrates an expert system with Internet of Things (IoT). An Artificial Neural Network (ANN) based expert system was implemented to classify input part designs based on CAD data and user inputs. Three ANN algorithms were trained on a knowledge base to identify optimal AM processes for different part designs. A two-stage model was used to enhance the prediction accuracy above 90% by increasing the number of input factors and datasets. A cyber interface was developed to query AM machine availability and resource capability using a Node-RED IoT device simulator. The dynamic AM machine identification system developed using an application programme interface (API) that integrates inputs from the smart algorithm and IoT interface for real-time predictions. This research establishes a foundation for the development of a cyber additive design for manufacturing system which can dynamically allocate digital designs to different AM techniques over the cyber network.  相似文献   

17.
Industry 4.0 provides new paradigms for the industrial management of SMEs. Supported by a growing number of new technologies, this concept appears more flexible and less expensive than traditional enterprise information systems such as ERP and MES. However, SMEs find themselves ill-equipped to face these new possibilities regarding their production planning and control functions. This paper presents a literature review of existing applied research covering different Industry 4.0 issues with regard to SMEs. Papers are classified according to a new framework which allows identification of the targeted performance objectives, the required managerial capacities and the selected group of technologies for each selected case. Our results show that SMEs do not exploit all the resources for implementing Industry 4.0 and often limit themselves to the adoption of Cloud Computing and the Internet of Things. Likewise, SMEs seem to have adopted Industry 4.0 concepts only for monitoring industrial processes and there is still absence of real applications in the field of production planning. Finally, our literature review shows that reported Industry 4.0 projects in SMEs remained cost-driven initiatives and there in still no evidence of real business model transformation at this time.  相似文献   

18.
以德国工业4.0为代表的第四次工业革命,对我国工业的发展产生了深远影响.本文首先分析了相关技术的发展趋势,以及此次变革的特征和要求,并总结分析了其在我国的发展现状,在此基础上重点分析了当前世界航空工业的技术现状,以及以信息化、数字化技术为代表的相关技术对航空工业产生的影响,我国航空工业在变革中标准顶层体系架构需要开展的工作.指出当今世界航空工业的发展技术水平应处在工业3.X的水平,我国航空工业处在工业2.X的水平,并对当前航空工业在变革中的发展给出了一些行动思路.  相似文献   

19.
The workforce ageing phenomenon is recently affecting most of the Organisation for Economic Co-operation and Development (OECD) member countries, due to a general ageing of their populations and a higher average retirement age of the workforce. In this paper, the topic of ageing workforce management is addressed from a production research standpoint, with the aim of understanding how older workers can be supported and involved in a manufacturing system. First, the current state of the art related to the ageing workforce in production systems is presented. This is structured according to four main topics: (1) analysis and evaluation of ageing workers’ functional capacities, (2) consideration of ageing workers’ capacities in industrial system modelling and management, (3) analysis and exploitation of ageing workers’ expertise, (4) acknowledgement, analysis, design and integration of supporting technologies. Next, the discussion on the impact of the ageing workforce on manufacturing systems’ performances leads to the comparison of some technological advances that are related to the Industry 4.0 paradigms. Finally, a future research agenda on this topic is proposed, based on the same topics classification proposed for the literature analysis. Five different research areas are derived, suggesting future directions for appropriate research concerning the employ of older workers in production environments.  相似文献   

20.
刘永红  刘倩 《包装工程》2018,39(8):113-116
目的研究工业4.0视角下工业设计对我国制造业转型升级的作用。方法首先简单分析了工业4.0对工业设计的影响,然后分别从国内和国外两个角度说明了我国制造业转型升级压力与动力并存,最后,重点对企业如何利用工业4.0环境下的发展条件,通过工业设计,实现企业转型升级进行了分析。结论工业4.0时代,工业设计通过促进企业产品升级、技术升级、产业结构升级、功能升级来总体实现我国制造业的转型升级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号