首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soft Switching Circuit for Interleaved Boost Converters   总被引:1,自引:0,他引:1  
A zero-voltage switching-zero-current switching interleaved boost converter is proposed in this paper. An active circuit branch in parallel with the main switches is added and it is composed of an auxiliary switch and a snubber capacitor. By using this interleaved converter topology, zero current turn-on and zero voltage turn-off of the main switches can be achieved and the reverse-recovery loss of boost diode can be reduced. In addition, the auxiliary switches are zero-voltage transmission during the whole switching transition. A prototype of boost converter rated at 1.2kW has been built to confirm the effectiveness of the converter  相似文献   

2.
This paper presents a new single-stage power factor correction ac/dc converter based on a three-level half-bridge resonant converter topology. The proposed circuit integrates the operation of the boost power factor preregulator and the three-level resonant dc/dc converter. A variable-frequency asymmetrical pulsewidth modulation controller is proposed for this converter. This control technique is based on two integrated control loops: the output voltage is regulated by controlling the switching frequency of the resonant converter, whereas the dc-bus voltage and input current are regulated by means of duty cycle control of the boost part of the converter. This provides a regulated output voltage and a nearly constant dc-bus voltage regardless of the loading condition; this, in turn, allows using smaller switches and consequently having a lower on resistance helping to reduce conduction losses. Zero-voltage switching is also achieved for a wide range of loading and input voltage. The resulting circuit, therefore, has high conversion efficiency making it suitable for high-power wide-input-voltage-range applications. The effectiveness of this method is verified on a 2.3-kW 48-V converter with input voltage (90–265 Vrms).   相似文献   

3.
High-efficiency stepping up operation is an important feature of the converters used in renewable power applications due to the low voltage level of photo-voltaic arrays and fuel cells. Decreasing the switching losses of the converters is an effective solution for increasing the converter efficiency, especially in high-power applications. This article presents a novel zero-voltage-transition (ZVT) interleaved dc–dc boost converter that can be used in renewable power sources to reduce switching losses. The auxiliary circuit used in the proposed converter is composed of only one auxiliary switch and a minimum number of passive components without an important increase in the cost and complexity. The main advantage of the proposed converter is that it not only provides ZVT in the boost switches but also provides soft switching in the auxiliary switch. Another advantage of the proposed topology is that the semiconductor devices used in the converter do not have any additional voltage or current stresses. Also, it has a simple structure, low cost and ease of control. In this article, a detailed steady-state analysis of the proposed converter is presented. The theoretical analysis is verified via simulation and experimental studies which are in very good agreement.  相似文献   

4.
This paper presents a new parallel three-level soft switching pulse-width modulation (PWM) converter. The proposed converter has two circuit cells operated by the interleaved PWM modulation. Thus, the ripple currents at input and output sides are reduced. Each circuit cell has two three-level zero voltage switching circuits sharing the same power switches. Therefore, the current and power rating of the secondary side components are reduced. Current double rectifier topology is selected on the secondary side to decrease output ripple current. The main advantages of the proposed converter are soft switching of power switches, low ripple current on the output side and low-voltage rating of power switches for medium-power applications. Finally, the performance of the proposed converter is verified by experiments with 1 kW prototype circuit.  相似文献   

5.
A new ZVT-PWM DC-DC converter   总被引:7,自引:0,他引:7  
In this paper, a new active snubber cell that overcomes most of the drawbacks of the normal "zero voltage transition-pulse width modulation" (ZVT-PWM) converter is proposed to contrive a new family of ZVT-PWM converters. A converter with the proposed snubber cell can also operate at light load conditions. All of the semiconductor devices in this converter are turned on and off under exact or near zero voltage switching (ZVS) and/or zero current switching (ZCS). No additional voltage and current stresses on the main switch and main diode occur. Also, the auxiliary switch and auxiliary diodes are subjected to voltage and current values at allowable levels. Moreover, the converter has a simple structure, low cost, and ease of control. A ZVT-PWM boost converter equipped with the proposed snubber cell is analyzed in detail. The predicted operation principles and theoretical analysis of the presented converter are verified with a prototype of a 2 kW and 50 kHz PWM boost converter with insulated gate bipolar transistor (IGBT). In this study, a design procedure of the proposed active snubber cell is also presented. Additionally, at full output power in the proposed soft switching converter, the main switch loss is about 27% and the total circuit loss is about 36% of that in its counterpart hard switching converter, and so the overall efficiency, which is about 91% in the hard switching case, increases to about 97%  相似文献   

6.
有源箝位软开关充电机的设计与仿真研究   总被引:1,自引:0,他引:1  
赵文强 《电子测试》2010,(11):56-61
传统硬开关电路影响效率和可靠性的同时,对其他设备的电磁干扰也较大,软开关则可解决上述问题。本文提出了一种基于辅助谐振换流的新型ZVT-PWM变换器,即通过采用简单的有源辅助谐振网络实现了主、辅开关管的软开关,主开关管实现了零电压开通,开关管电流电压应力小。利用这种软开关技术研制了一台用于为风力发电蓄电池充电的充电机,给出了充电机的控制系统框图,简单介绍了充电机的工作原理。最后利用Pspice给出了运行波形和仿真结果。  相似文献   

7.
This paper develops a power loss optimization method in a current fed zero-voltage switching (ZVS) two-inductor boost converter, which is suitable for the module integrated converter applications in grid interactive photovoltaic systems. The paper conducts the numerical analysis of the variable power loss components and establishes a set of the circuit parameters for an optimized operating point with a minimized average power loss. The ZVS two-inductor boost cell is fed from a sinusoidally modulated two-phase synchronous buck converter with an interphase transformer and produces a rectified sinusoidal voltage, which can be applied to an unfolding stage to generate the grid compatible voltage. The boost cell is also equipped with a resonant transition gate drive circuit to reduce the power loss in the drive circuit under high frequency operations. The experimental results for a prototype 1-MHz 100-W ZVS two-inductor boost converter are presented at the end of the paper.  相似文献   

8.
为了满足升压型变换器低成本和大功率密度的需求,本文提出了一种软开关单极隔离型DC-DC变换器。该变换器电路包含一个无损耗缓冲器,通过漏电感固定住开关的电压峰值,从而实现开关的ZVS关断。在失谐状态下,使用Lr-Cr串联谐振电路来实现二极管的ZCS关断。由于磁化电流低,相较于传统的基于反激的变换器,变压器的容量更少。在输出功率250W和开关频率100kHz的条件下进行了实际测试,提出的变换器的最大测量效率为97.0%。  相似文献   

9.
This paper presents a new single-stage three-level resonant power factor correction ac-dc converter suitable for high power applications (in the order of multiple kilowatts) with a universal input voltage range (90–265 Vrms). The proposed topology integrates the boost input power factor preregulator with a half-bridge three-level resonant dc-dc converter. The converter operation is controlled by means of a combination of phase-shift and variable frequency control. The phase-shift between the switch gate pulses is used to provide the required input current shaping and to regulate the dc-bus voltage to a set reference value for all loading conditions, whereas, variable frequency control is used to tightly regulate the output voltage. An auxiliary circuit is used in order to balance the voltage across the two dc-bus capacitors. Zero voltage switching (ZVS) is also achieved for a wide range of loading and input voltage by having a lagging resonant current in addition to the flowing of the boost inductor current through the body diodes of the upper pair of switches in the free wheeling mode. The resulting circuit, therefore, has high conversion efficiency and lower component stresses making it suitable for high power, wide input voltage range applications. The effectiveness of the proposed converter is verified by analysis, simulation, and experimental results.   相似文献   

10.
A soft-commutating method and control scheme for an isolated boost full bridge converter is proposed in this paper to implement dual operation of the well-known soft-switching full bridge dc/dc buck converter for bidirectional high power applications. It provides a unique commutation logic to minimize a mismatch between current in the current-fed inductor and current in the leakage inductance of the transformer when commutation takes place, significantly reducing the power rating for a voltage clamping snubber and enabling use of a simple passive clamped snubber. To minimize the mismatch, the method and control scheme utilizes the resonant tank and freewheeling path in the existing full bridge inverter at the voltage-fed side to preset the current in the leakage inductance of the transformer in a resonant manner. Zero-voltage-switching is also achieved for all the switches at the voltage-fed side inverter in boost mode operation. The proposed soft-commutating method is verified through boost mode operation of a 3-kW bidirectional isolated full bridge dc/dc converter developed for fuel cell electric vehicle applications. The tested result verified the isolated boost converter can operate at an input voltage of 8.5–15V and an output voltage of 250–420V with a peak efficiency of 93% and an average efficiency of 88% at 55-kHz switching frequency with 72$^circ$C automotive coolant.  相似文献   

11.
12.
An active clamp SEPIC converter with synchronous rectifier is presented to achieve zero voltage switching (ZVS). The active clamp circuit is adopted in the proposed converter to absorb the energy stored in the leakage inductance of the transformer and limit the peak voltage stress on the switching devices. The resonance during the transition interval between the switching devices will help the power switches to turn on at ZVS. Therefore, the switching losses of switches are effectively reduced. The synchronous rectifier is used at the secondary side of the transformer to further reduce the conduction loss. The principle of operation and the steady-state analysis of the proposed converter are presented. Finally, the experimental results taken from a laboratory prototype with 240 W (12V/20A) rated power are presented to verify the effectiveness of the proposed converter.  相似文献   

13.
This paper focuses on a new three-phase high power current-fed dc/dc converter with an active clamp. A three-phase dc/dc converter with high efficiency and voltage boosting capability is designed for use in the interface between a low-voltage fuel-cell source and a high-voltage dc bus for inverters. Zero-voltage switching in all active switches is achieved through using a common active clamp branch, and zero current switching in the rectifier diodes is achieved through discontinuous current conduction in the secondary side. Further, the converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Moreover, a delta-delta connection on the three-phase transformer provides parallel current paths and reduces conduction losses in the transformer windings. An efficiency of above 93% is achieved through both improvements in the switching and through reducing conduction losses. A high voltage ratio is achieved by combining inherent voltage boost characteristics of the current-fed converter and the transformer turns ratio. The proposed converter and three-phase PWM strategy is analyzed, simulated, and implemented in hardware. Experimental results are obtained on a 500-W prototype unit, with all of the design verified and analyzed.   相似文献   

14.
This paper studied a bidirectional frequency-control dc converter with magnetic-coupling to achieve 1) current balance on low voltage side, 2) low switching losses on power devices, and 3) bidirectional power transfer capability. The developed circuit is basically constructed by half-bridge circuits on input and output sides. LLC resonant tank with frequency-control is used to obtain low switching losses on power devices. Magnetic-coupling element is used to achieve current balance on low voltage side. Synchronous rectifiers are employed on low voltage and high current side to decrease power losses and increase circuit efficiency. The effectiveness of the studied circuit is verified from a 720 W laboratory prototype.  相似文献   

15.
王强  李兵  王天施  刘晓琴 《电子学报》2020,48(3):616-620
为改善单相AC-DC-AC变换器的性能,提出了一种单相谐振直流环节零电压开关AC-DC-AC功率变换器拓扑结构,由图腾柱式单相整流器,位于直流环节的辅助谐振电路和单相全桥逆变器组成.利用同一组辅助电路能分别将整流器输出端电压和逆变器输入端电压变化到零,使整流器和逆变器桥臂上的开关器件分别实现零电压切换.分析了电路的工作流程,在1.2kW样机上的实验结果表明开关器件完成了软切换.该拓扑结构对于研发节能型单相AC-DC-AC变换器具有借鉴意义.  相似文献   

16.
A new ZVT-ZCT-PWM DC-DC converter   总被引:4,自引:0,他引:4  
In this paper, a new active snubber cell is proposed to contrive a new family of pulse width modulated (PWM) converters. This snubber cell provides zero voltage transition (ZVT) turn on and zero current transition (ZCT) turn off together for the main switch of a converter. Also, the snubber cell is implemented by using only one quasi resonant circuit without an important increase in the cost and complexity of the converter. New ZVT-ZCT-PWM converter equipped with the proposed snubber cell provides most the desirable features of both ZVT and ZCT converters presented previously, and overcomes most the drawbacks of these converters. Subsequently, the new converter can operate with soft switching successfully at very wide line and load ranges and at considerably high frequencies. Moreover, all semiconductor devices operate under soft switching, the main devices do not have any additional voltage and current stresses, and the stresses on the auxiliary devices are at low levels. Also, the new converter has a simple structure, low cost and ease of control. In this study, a detailed steady state analysis of the new converter is presented, and this theoretical analysis is verified exactly by a prototype of a 1-kW and 100-kHz boost converter.  相似文献   

17.
This paper presents a zero-voltage-transition (ZVT) boost converter using a soft switching auxiliary circuit for power factor correction (PFC) applications. The improvement over existing topologies lies in the positioning of the auxiliary circuit capacitors and the subsequent reduction in the resonant current and therefore the conduction losses as compared to other similar topologies. The proposed converter operates in two modes - Mode 1 and Mode 2. It is shown in the paper that the converter should be designed using the constraints obtained in Mode 1 to achieve low-loss switching. The converter is analyzed and characteristic curves presented which are then used in a detailed design example. Experimental results from a 250 W, 127 V input laboratory prototype switching at 100 kHz verify the design process and highlight the advantages of the proposed topology. The proposed converter is suitable for single-phase, two stage power factor correction circuits with universal input voltage range and power levels up to 3 kW.  相似文献   

18.
The interleaved boost power converter has the advantages of ripple cancellation and better efficiency. The major problem of the interleaved boost power converter is the current balancing among different phases of the boost power converters. In this paper, a current balancing control method for equalizing the currents of two-phase interleaved boost power converter is proposed. The output current can effectively detect the mismatch between the boost power converters for the interleaved boost power converter. The output current is used to perform both the current balance and the current-mode control. The salient feature is that only one current sensor is used in the proposed current balancing control method. A hardware prototype is developed, and the experimental results verify the performance of the proposed current balancing control method is as expected.  相似文献   

19.
为提高转换效率并降低电源开关的电流应力,提出一种基于新型有源缓冲电路的PWM DC-DC升压变换器。该有源缓冲电路使用ZVT—ZCT软开关技术,分别提供了总开关ZVT开启及ZCT闭合、辅助开关ZCS开启及ZCT闭合。消除了总开关额外的电流及电压应力,消除了辅助开关电压应力,且有源缓冲电路的耦合电感降低了电流应力。另外,通过连续将二极管添加到辅助开关电路,防止来自共振电路的输入电流应力进入总开关。实验结果表明,相比传统的PWM变换器,新的DC-DC PWM升压变换器在满负荷时电流应力降低且总体效率能达到98.7%。  相似文献   

20.
This paper proposes a boost converter with coupled inductors and a buck-boost type of active clamp. In the converter, the active-clamp circuit is used to eliminate the voltage spike that is induced by the trapped energy in the leakage inductor of the coupled inductors. The active switch in the converter can still sustain a proper duty ratio even under high step-up applications, reducing voltage and current stresses significantly. Moreover, since both main and auxiliary switches can be turned on with zero-voltage switching, switching loss can be reduced, and conversion efficiency therefore can be improved significantly. A 200 W prototype of the proposed boost converter was built, from which experiment results have shown that efficiency can reach as high as 92% and surge can be suppressed effectively. It is relatively feasible for low-input-voltage applications, such as fuel cell and battery power conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号