共查询到20条相似文献,搜索用时 15 毫秒
1.
Workload Control (WLC) seeks to align capacity with demand, where capacity is typically assumed to be restricted by a single constraint – machine capacity. In practice, however, shops are often restricted by dual resource constraints: labour and machines. This study, therefore, uses simulation to investigate the performance of WLC in Dual Resource Constrained (DRC) high-variety shops with fully interchangeable labour. By considering several environmental factors and different labour assignment and dispatching rules, it is demonstrated that the order release function of WLC maintains its positive impact on performance in a DRC shop under different staffing levels. The positive effect of considering labour availability at release, as proposed in previous research, could not, however, be confirmed. Thus, the original release method can be applied if labour is fully interchangeable. In terms of labour assignment, we show that a distinct assignment pattern that differs between upstream and downstream stations improves performance if the routing is directed. Meanwhile, dispatching plays a less important role but creates important interaction effects with the assignment rule. Finally, the results suggest that increasing the service rate is a better response to the reduction in capacity that results from labour absenteeism than lowering the input frequency of work. 相似文献
2.
Recent research has highlighted the potential impact of pool sequencing on order release performance but it suffered from two shortcomings. First, arguably the best release solution for workload control in practice combines periodic with continuous release. Although the two types of releases serve different functions, recent work assumed the same sequencing rule should be used for both. Here, the use of different sequencing rules for periodic and continuous releases is evaluated. Using a job-shop simulation, we demonstrate that the rule applied during continuous releases has only a negligible impact on performance. Therefore, jobs can be pulled intermediately from the pool by workers using a more straightforward sequencing rule than the one applied for periodic release. Second, it was assumed that all jobs in the pool are sequenced and then a subset is selected for release. But for some load-oriented sequencing rules, the priority value used for sequencing jobs should be updated after each job selection from the pool. Our simulation results show that although this may improve load balancing at release, it does not in fact improve overall shop performance. Therefore, the greedy heuristic of first sequencing and then selecting jobs can be maintained, which allows the release decision-making process to retain its simplicity. The work has important implications for the use of sequencing rules in practice. 相似文献
3.
Nuno O. Fernandes Matthias Thürer Tatiana M. Pinho Pedro Torres Sílvio Carmo-Silva 《国际生产研究杂志》2020,58(10):3180-3193
An important scheduling function of manufacturing systems is controlled order release. While there exists a broad literature on order release, reported release procedures typically use simple sequencing rules and greedy heuristics to determine which jobs to select for release. While this is appealing due to its simplicity, its adequateness has recently been questioned. In response, this study uses an integer linear programming model to select orders for release to the shop floor. Using simulation, we show that optimisation has the potential to improve performance compared to ‘classical’ release based on pool sequencing rules. However, in order to also outperform more powerful pool sequencing rules, load balancing and timing must be considered at release. Existing optimisation-based release methods emphasise load balancing in periods when jobs are on time. In line with recent advances in Workload Control theory, we show that a better percentage tardy performance can be achieved by only emphasising load balancing when many jobs are urgent. However, counterintuitively, emphasising urgency in underload periods leads to higher mean tardiness. Compared to previous literature we further highlight that continuous optimisation-based release outperforms periodic optimisation-based release. This has important implications on how optimised-based release should be designed. 相似文献
4.
Matthias Thürer Ting Qu Mark Stevenson Thomas Maschek Moacir Godinho Filho 《国际生产研究杂志》2013,51(22):6664-6680
Order release is a key component of the Workload Control concept. Jobs do not enter the shop floor directly – they are retained in a pre-shop pool and released in time to meet due dates while keeping work-in-process within limits or norms. There are two important groups of release methods: continuous methods, for which the workload falling to a specified level can trigger a release at any moment in time; and, periodic release methods, for which releases take place at fixed intervals. Continuous release methods in general have been shown to outperform periodic release methods. Yet, there is incongruence in the results presented in the literature on the relative performance of the various continuous release methods. We use a job shop simulation model to examine the performance of continuous release methods from the literature and find that the contradictory results are explained by the different rules applied to sequence jobs in the pool – a factor neglected in previous work. Finally, a new breed of continuous release methods has recently emerged, but these have not been compared with prior approaches. Therefore, we also examine these methods and show that they significantly improve overall performance, although this is to the detriment of jobs with large processing times. 相似文献
5.
Workload Control is a production control concept for high-variety shops built on the principle of input/output control. The literature, however, has argued that input/output control overemphasises throughput improvements to the detriment of the timing of individual orders and, consequently, that it needs to be supplemented by a preceding customer enquiry stage where due dates are set. Yet, although there are broad separate literature streams on due date setting, order release, and output control, there is a lack of research on the three functions together. In response, this study uses simulation to assess the combined performance effect of all three functions. Results show that each control function can be related to a specific performance objective. The degree of emphasis that should be placed on each function, therefore, depends on a company’s specific performance needs. Due date setting and capacity adjustments (output control) are shown to support each other as they address different performance objectives. Meanwhile, order release (input control) is effective in reducing work-in-process and can play a role in making throughput improvements when capacity adjustments are not possible. Findings enhance existing literature on the diagnosis of delivery reliability performance in high-variety shops, with important implications for research and practice. 相似文献
6.
One of the key functions of Workload Control is order release. Jobs are not released immediately onto the shop floor – they are withheld and selectively released to create a mix of jobs that keeps work-in-process within limits and meet due dates. A recent implementation of Workload Control’s release method highlighted an important issue thus far overlooked by research: How to accommodate re-entrant flows, whereby a station is visited multiple times by the same job? We present the first study to compare the performance of Workload Control both with and without re-entrant flows. Simulation results from a job shop model highlight two important aspects: (i) re-entrant flows increase variability in the work arriving at a station, leading to a direct detrimental effect on performance; (ii) re-entrant flows affect the release decision-making process since the load contribution of all visits by a job to a station has to fit within the norm. Both aspects have implications for practice and our interpretation of previous research since: (i) parameters given for work arriving may significantly differ from those realised; (ii) increased workload contributions at release mean that prior simulations may have been unstable, leading to some jobs never being released. 相似文献
7.
Workload control (WLC) is a production planning and control concept developed to meet the needs of small- and medium-sized make-to-order companies, where a job shop configuration is common. Although simulation has shown WLC can improve job shop performance, field researchers have encountered significant implementation challenges. One of the most notable challenges is the presence of ‘assembly job shops’ where product structures are more complex than typically modelled in simulation and where the final product consists of several sub-assemblies (or work orders) which have to be co-ordinated. WLC theory has not been developed sufficiently to handle such contexts, and the available literature on assembly job shops is limited. In response, this paper extends the applicability of WLC to assembly job shops by determining the best combination of: (i) WLC due date (DD) setting policy, (ii) release method and (iii) policy for coordinating the progress of work orders. When DDs are predominantly set by the company, the DD setting policy should play the leading role while the role of order release should be limited and the progress of work orders should not be co-ordinated in accordance with the DD of the final product. But when DDs are predominantly specified by customers, the importance of order release as a second workload balancing mechanism increases and work orders should be coordinated by backward scheduling from the DD of the final product. Results indicate that WLC can improve performance in assembly job shops and outperform alternative control policies. Future research should implement these findings in practice. 相似文献
8.
Workload control (WLC) is a well-established production control concept for job shops that put primary emphasis on load-based order release. Recent advances in load-based order release research have led to an improved delivery performance at reduced shop floor workloads. But although order release is the primary focus of WLC research, it must be coupled with priority dispatching on the shop floor if order progress is to be regulated. Prior simulation research suggests that load-based order release methods should only be coupled with simple dispatching rules because other, more powerful rules can conflict with the functioning of the release method. Yet, recent empirical research suggests that powerful priority dispatching rules – such as due date-oriented dispatching rules – are in fact needed for a high level of delivery performance to be obtained in practice. This paper focuses on overcoming the conflict between order release and dispatching, so load-based order release can be combined with due date-oriented dispatching. Preliminary analysis reveals that part of the conflict is because existing due date-oriented dispatching rules overcompensate for schedule deviations that occur when orders are either released earlier or later than planned. Two alternative new dispatching rules based on an improved method of determining operation due dates are then developed to better account for schedule deviations and overcome the conflict with load-based order release. Further improvements in delivery performance are obtained, while the large workload reductions achieved by recently developed load-based order release methods are retained. 相似文献
9.
There are many dynamic events like new order arrivals, machine breakdowns, changes in due dates, order cancellations, arrival of urgent orders etc. that makes static scheduling approaches very difficult. A dynamic scheduling strategy should be adopted under such production circumstances. In the present study an event driven dynamic job shop scheduling mechanism under machine capacity constraints is proposed. The proposed method makes use of the greedy randomised adaptive search procedure (GRASP) by also taking into account orders due dates and sequence-dependent set-up times. Moreover, order acceptance/rejection decision and Order Review Release mechanism are integrated with scheduling decision in order to meet customer due date requirements while attempting to execute capacity adjustments. We employed a goal programming-based logic which is used to evaluate four objectives: mean tardiness, schedule unstability, makespan and mean flow time. Benchmark problems including number of orders, number of machines and different dynamic events are generated. In addition to event-driven rescheduling strategy, a periodic rescheduling strategy is also devised and both strategies are compared for different problems. Experimental studies are performed to evaluate effectiveness of the proposed method. Obtained results have proved that the proposed method is a feasible approach for rescheduling problems under dynamic environments. 相似文献
10.
The workload control literature highlights the importance of balancing the shop floor workload, but also acknowledges that this can conflict with processing the most urgent orders – hence, there is a trade-off. In practice, shops contain many complexities, e.g. simultaneous batching and sequence-dependent set-up times that may conflict with processing the most urgent orders and require other solutions than workload balancing to avoid capacity losses. This adds to the trade-off dilemma, which traditionally only considers timing and balancing. This paper develops a framework that determines whether to address a complexity through order release or dispatching. It comprises two dimensions: (i) the typical position of a complexity in the routing of an order and (ii) the criticality of the complexity. A case study is presented, which demonstrates the framework’s utility and illustrates the development of specific solutions designed to handle the complexities. Most complexities present in the case require handling at the order release stage. The challenges of handling multiple complexities at this decision level are evaluated. Finally, the implications for managers and future research are outlined. 相似文献
11.
Workload control (WLC) is a leading production planning and control (PPC) solution for small to medium sized enterprises (SMEs) and make-to-order (MTO) companies, but when WLC is implemented, practitioners find it difficult to determine suitable workload norms to obtain optimum performance. Theory has provided some solutions (e.g., based on linear programming) but, to remain optimal, these require the regular feedback of detailed information from the shop floor about the status of work-in-process (WIP), and are therefore often impractical. This paper seeks to predict workload norms without such feedback requirements, analysing the influence of shop floor characteristics on the workload norm. The shop parameters considered are flow characteristics (from an undirected pure job shop to a directed general flow shop), and the number of possible work centres in the routing of a job (i.e., the routing length). Using simulation and optimisation software, the workload norm resulting in optimum performance is determined for each work centre for two aggregate load-oriented WLC approaches: the classical and corrected load methods. Results suggest that the performance of the classical approach is heavily affected by shop floor characteristics but no direct relationship between the characteristics and norm to apply could be established. In contrast, results suggest that the performance of the corrected load approach is not influenced by shop floor characteristics and the workload norm which results in optimum performance is the same for all experiments. Given the changing nature of MTO production and the difficulties encountered with the classical approach, the corrected load approach is considered a better and more robust option for implementation in practice. Future simulations should investigate the influence of differing capacities across work centres on the workload norm while action research should be conducted to apply the findings in practice. 相似文献
12.
为了减少装配作业车间内因物料齐套产生的等待浪费,使具有装配约束的关联零件加工进度得到有效协同,设计一类卡片导航平衡控制系统 (control of balance by card-based navigation,COBACABANA)。其基于两类卡片循环回路实现任务投放与作业分派的可视化进度协同控制逻辑。本文详细介绍系统的运行机制和系统控制参量,通过构建一般化的装配作业车间仿真模型,探讨在不同装配关联度下各控制参量的性能变化。实验结果表明,COBACABANA系统性能良好,并且选择合适的控制参量就能够有效提升关联零件的进度协同性。 相似文献
13.
Kanban systems are simple yet effective means of controlling production. Production control is decentralised or exercised locally on the shop floor, i.e. a downstream station signals to an upstream station that an item is needed. If items are always the same and known, then demands can be satisfied instantaneously from stock; but if items differ and are unknown, demands must first be propagated backwards from station to station before being satisfied. The former is defined as an inventory control problem and the latter as an order control problem. Handling the order control problem via kanban involves a decentralised card acquisition process (during which information is propagated from station to station) that is separated from the actual production process. COBACABANA (control of balance by card-based navigation), an alternative card-based solution, shares kanban’s control structure but centralises the card acquisition process. Evaluating the two systems therefore provides a unique opportunity to compare decentralised and centralised control. Using simulation, we demonstrate that it is specifically the centralised card acquisition process that allows COBACABANA to balance the workload across resources and thus to outperform kanban in an order control problem. This has major implications for research and practice. 相似文献
14.
Simulation has demonstrated that the workload control (WLC) concept can improve performance in job shops, but positive empirical results are scarce. A key reason for this is that the concept has not been developed to handle a number of practical considerations, including sequence-dependent set-up times. This paper investigates the influence of sequence-dependent set-up times on the performance of a workload-controlled job shop. It introduces new set-up-oriented dispatching rules and assesses the performance impact of controlled order release. Simulation results demonstrate that combining an effective WLC order release rule with an appropriate dispatching rule improves performance over use of a dispatching rule in isolation when set-up times are sequence dependent. The findings improve our understanding of how this key implementation challenge can be overcome. Future research should investigate whether the results hold if set-up time parameters are dynamic and set-up times are not evenly distributed across resources. 相似文献
15.
16.
The problem of component allocation and sequencing PCB assembly jobs for two series-connected SMD placement machines is addressed. With the allocation of components, a balancing of the workload per PCB for the two machines should be achieved. Furthermore, when switching from one type of PCB to another, setup times must be considered. Two heuristic procedures are developed and tested in extensive numeric analyses of a number of realistic case models. The problem examined and the database used represent a concrete case of an industrial application in which very diversified small jobs are to be processed. 相似文献
17.
Workload control is a production planning and control concept designed to meet the need of the make-to-order industry. In this paper, a multi-agent workload control methodology that simultaneously addresses due date setting, job release and scheduling is proposed. To be consistent with just-in-time production, the objective of minimizing weighted job earliness and tardiness is used. Two new rules are developed, by introducing a feedback mechanism, to set job due dates dynamically. These two new rules implicitly include job pool times and, thus, eliminate the need to estimate job pool times in the presence of workload control. At the critical norm defined in this paper job release control can reduce average job flowtime and work-in-process inventory, without worsening earliness and tardiness, and lead-time performances. The proposed methodology is implemented in a flexible job shop environment. The computational results indicate that the proposed methodology is very effective for production planning and control in make-to-order companies. In addition, the proposed methodology is extremely fast and can be implemented in real time. 相似文献
18.
In this paper, two new approaches are proposed for extracting composite priority rules for scheduling problems. The suggested approaches use simulation and gene expression programming and are able to evolve specific priority rules for all dynamic scheduling problems in accordance with their features. The methods are based on the idea that both the proper design of the function and terminal sets and the structure of the gene expression programming approach significantly affect the results. In the first proposed approach, modified and operational features of the scheduling environment are added to the terminal set, and a multigenic system is used, whereas in the second approach, priority rules are used as automatically defined functions, which are combined with the cellular system for gene expression programming. A comparison shows that the second approach generates better results than the first; however, all of the extracted rules yield better results than the rules from the literature, especially for the defined multi-objective function consisting of makespan, mean lateness and mean flow time. The presented methods and the generated priority rules are robust and can be applied to all real and large-scale dynamic scheduling problems. 相似文献
19.
The goal of the current study is to identify appropriate application domains of Ant Colony Optimisation (ACO) in the area of dynamic job shop scheduling problem. The algorithm is tested in a shop floor scenario with three levels of machine utilisations, three different processing time distributions, and three different performance measures for intermediate scheduling problems. The steady-state performances of ACO in terms of mean flow time, mean tardiness, total throughput on different experimental environments are compared with those from dispatching rules including first-in-first-out, shortest processing time, and minimum slack time. Two series of experiments are carried out to identify the best ACO strategy and the best performing dispatching rule. Those two approaches are thereafter compared with different variations of processing times. The experimental results show that ACO outperforms other approaches when the machine utilisation or the variation of processing times is not high. 相似文献
20.
Matthias Thürer George Huang Mark Stevenson Cristovao Silva Moacir Godinho Filho 《国际生产研究杂志》2013,51(20):5949-5965
Setting short yet reliable Due Dates (DDs) is an important early production planning and control task. The majority of job-shop research on DD setting assumes simple product structures without assembly operations. However, in practice, product structures are often complex, and multiple final assembly operations may be required. This paper evaluates the performance of DD setting rules in the context of complex product structures, considering two scenarios: two-level assembly job shops, where orders converge on one final assembly operation; and two-level multi-stage job shops, where a series of assembly operations are undertaken. New rules are proposed which are substantially simpler and more suitable for practical use than those in the literature. These rules are only outperformed by a more sophisticated rule from the wider literature, newly introduced into the context of assembly and multi-stage job shops. Which rule to apply in practice depends on whether a manager considers the improvement in performance more important than the loss of simplicity. Future research should investigate how jobs can be planned and controlled effectively when some or all DDs are set externally by customers rather than internally using a DD setting rule. 相似文献