首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bio-telemetry is an advanced area of research that enables the transmission of biomedical parameters from human body to external monitoring device. Wearable antennas showing robust performance are attaining attention for RF bio-telemetry. A square ring-shaped ground antenna with a truncated patch is investigated for dual mode, on-body and off-body communication. The proposed antenna structure is analysed and optimised on a multi-layered flat tissue phantom. Proposed design resonates at 2.6 GHz with |S11| ?22 dB and at 5.2 GHz with |S11| ?35 dB on the phantom gel. Wide bandwidth of 520 MHz (2.33–2.85 GHz) and 620 MHz (4.78–5.4 GHz) efficiently covers ISM, LTE and WLAN bands and enables the antenna to withstand frequency detuning due to different body postures. Antenna shows maximum radiation efficiency of 15% at 2.45 GHz band when placed close to the tissue. Low specific absorption rate (SAR) value of 0.459/0.523/0.303 W/Kg at 2.45/2.6/5.2 GHz ensures the tissue safety.  相似文献   

2.
ABSTRACT

A compact planar Ultrawideband (UWB) monopole antenna with quadruple band notch characteristics is proposed. The proposed antenna consists of a notched rectangular radiating patch with a 50 Ω microstrip feed line, and a defected ground plane. The quadruple band notched functions are achieved by utilising two inverted U-shaped slots, a symmetrical split ring resonator pair (SSRRP) and a via hole. The fabricated antenna has a compact size of 24 mm × 30 mm × 1.6 mm with an impedance bandwidth ranging from 2.86 to 12.2 GHz for magnitude of S11 < ?10 dB. The four band notched characteristics of proposed antenna are in the WiMAX (worldwide interoperability for microwave access) band (3.25–3.55 GHz), C band (3.7–4.2 GHz), WLAN (wireless local area network) band (5.2–5.9 GHz) and the downlink frequency band of X band (7–7.8 GHz) for satellite communication are obtained. The measured and simulation results of proposed antenna are in good agreement to achieve impedance matching, stable radiation patterns, constant gain and group delay over the operating bandwidth.  相似文献   

3.
In this paper, an equivalent circuit model-based electrically small patch antenna is designed for sub-6 GHz 5G application (3.5 GHz) using 50-Ω microstrip line feed. The overall size of the proposed antenna is 0.33λ0 × 0.4λ0 × 0.019λ0 (28 × 34 × 1.6 mm3) at 3.50 GHz frequency. The proposed antenna has a tilted Y-shape slot, two rectangular shape slots, and two rectangular shape notches in the radiating patch. The proposed antenna is resonating from 3.21 to 3.74 GHz covering the entire sub-6 GHz 5G band (3.3–3.8 GHz). The impedance bandwidth (simulated) of the proposed antenna has been obtained 530 MHz resonating at 3.50 GHz frequency. The good return loss of −23.62 dB is also obtained at 3.50 GHz resonant frequency. The simulation results and geometry of the proposed antenna are validated with equivalent circuit model and experimental measurement of prototype antenna using vector network analyzer (VNA) and anechoic chamber. In the whole operating frequency range, the measured findings show reasonable agreement with the simulated ones. The measured impedance bandwidth of the proposed antenna has been obtained 480 MHz (3.21–3.69 GHz) resonating at 3.48 GHz frequency with a return loss of −21.61 dB, while the theoretical impedance bandwidth of the proposed antenna has been obtained 720 MHz (3.18–3.90 GHz) resonating at 3.58 GHz frequency with a return loss of −21.5 dB. The peak gain of 3.39 (simulated) and 3.2 dB (measured) is obtained at 3.50 GHz frequency. Moreover, the antenna shows 97% (simulated) and 95% (measured) efficiency at 3.50 GHz frequency.  相似文献   

4.
This paper presents the design of a miniaturized broadband monopole antenna for 5G and Wireless Local Area Network (WLAN) applications in mobile handsets. The proposed monopole evolved from a rectangular geometry of size 12 × 5 mm. The slot and stub loading techniques are used to improve the impedance matching offered by the antenna. Furthermore, bandwidth broadening is achieved using lumped elements loaded onto the aperture of the antenna. The proposed miniaturized antenna exhibits a measured impedance bandwidth of 63.6% (3.0–5.8 GHz) covering the 5G spectrum allocations under sub-6 GHz and the WLAN services. The antenna elements are replicated along the sides of the mock mobile handset PCB to study the functionality of the eight-element MIMO antenna. The prototype MIMO antenna fabricated and tested in the laboratory offers a peak gain of 3 dBi and total efficiency greater than 72%. Owing to miniaturization, the spatial distribution of the antenna element provides a low envelope correlation (ECC) of less than 0.2 and good diversity gain (DG) greater than 7.8 dB. In addition, the mean effective gain (MEG), channel capacity loss (CCL), multiplexing efficiency (ME), and total active reflection coefficient (TARC) are evaluated and presented. The estimated MIMO metrics are within the desired range of operation and hence make the antenna suitable for a complex propagation environment. The prototype antenna is developed on a thin microwave laminate with low-loss characteristics and tested under laboratory conditions. The outcomes indicate that the proposed eight-element antenna can be applied to 5G MIMO communications.  相似文献   

5.
A novel broadband circularly polarised (CP) monopole antenna is designed and implemented in this article. The antenna consists of a radiating patch that is composed of an annular-ring linked by a square ring over the corner and a modified ground plane. The broadband property is achieved based on a novel monopole structure that is connected by two perturbed loops, so the CP wave is generated due to the perturbation. Besides, by cutting a rectangular slit and embedding a vertical stub on the ground plane, the impedance and axial-ratio (AR) bandwidths can be greatly enhanced. The measured results reveal that the proposed monopole antenna has an impedance bandwidth of 4.575 GHz from 2.3 to 6.85 GHz, reaching the particularly broad bandwidth of 99.5%. Furthermore, a wide 3-dB AR bandwidth of 34.6% (1.53 GHz, 3.65–5.18 GHz) centred at 4.42 GHz is achieved. The radiation characteristics of the designed antenna are also presented.  相似文献   

6.
提出了一种基体背面有电磁带隙结构的倒“T”形双频微带天线。研究发现该天线具有双频带特性,其双频工作频率分别为2.4 GHz和5.2 GHz,相应的带宽为805 MHz (2.099~2.944 GHz) 和831 MHz (4.568~5.409 GHz),增益达到3.1 dBi。仿真和测试结果基本吻合,表明该天线可以很好地满足WLAN工作频段标准要求,具有很好的应用前景。  相似文献   

7.
一种用于WLAN的宽频带微带天线   总被引:1,自引:0,他引:1  
采用双层结构拓展矩形微带天线带宽,利用有限积分法软件研究了寄生单元大小、以及两层贴片间的空气间隔对天线性能的影响。优化设计出的天线在电压驻波比(Voltage Standing Wave Ratio,VSWR)≤2的情况下,将原普通贴片天线4.5%的带宽提高到了23.6%,且增益在整个频带范围内达到6dB以上。该天线的工作频带完全覆盖无线局域网(Wireless Local Area Network,WLAN)的IEEE802.11a标准(5.15~5.825GHz)。实验测量结果与数值模拟结果相吻合。  相似文献   

8.
A novel compact microstrip-fed UWB antenna with quad notched band is proposed. The antenna consists of a rectangular radiating patch with a half circle, a tapered microstrip feed-line, and a semi-elliptical ground plane. With a pair of L-shaped slots, complementary co-directional SRR and a pair of C-shaped stubs, four notched bands are created to prevent interference from WiMAX/lower WLAN/higher WLAN/X-band. Experimental results show that the designed antenna, with compact size of 20 × 30 mm2, has an ultrawide band (VSWR < 2) from 2.68 to 13 GHz, except four notched bands of 3.13–3.8, 4.87–5.52, 5.65–6.1, 7.12–8 GHz. Good radiation patterns and stable gain within the operating band have been observed.  相似文献   

9.
A novel coplanar waveguide (CPW) antenna is proposed for dual-band WLAN applications. It comprises a rectangular patch, a rectangular notch cut at the lower edge of the patch and a CPW transmission line. The rectangular patch together with the ground plane of the coplanar waveguide radiates at the lower frequency band, 2.4 GHz for IEEE 802.11b/g, while the rectangular notch resonates in the upper band, 5.2/5.8 GHz for IEEE 802.11a. The designed antenna is only 32 × 5 mm, which can provide stable omnidirectional radiation patterns with an average gain of 2 dBi in both the bands. The antenna is very compact and suitable for 2.4 and 5.2/5.8 GHz WLAN operations.  相似文献   

10.

A compact rectangular microstrip-fed Ultra Wideband patch antenna with double band notched feature at Wi-Max and WLAN is offered in this paper. The designed antenna is composed of an ordinary rectangular patch antenna with a partially defective ground structure. For achieving dual notch characteristics a ‘U’ and ‘Reversed U’ slots are embedded in the radiating patch. The partial ground plane structure with U shaped slot in the middle is incorporated for achieving additional resonance and bandwidth enhancement. The proposed antenna has a measurement of 20 × 33 × 1.6 mm3. First notch created by U shaped slot at frequency 3.5 GHz is for Wi-Max (from 2.9 to 4.5 GHz) and Second notch which is generated by Reversed U shaped slots at frequency 5.4 GHz is for WLAN (from 5.49 to 6.45 GHz). The antenna covers almost complete range of Ultra Wideband (3.1–10.6 GHz). The Simulation analysis of the proposed antenna is carried out using CST-2011 simulation software. The radiation pattern of the simulated antenna is near Omnidirectional and the Gain of proposed antenna is almost stable over the range of UWB excluding notch bands.

  相似文献   

11.
设计了一款新型的具有陷波特性的超宽带单极子天线。该天线的带宽为3. 1 ~ 12. 0 GHz,通过在矩 形辐射贴片上制作出对称的梯形结构、中心加载倒C 形缝隙、矩形开槽,并将窄矩形接地板切除两个边角,制作矩形 开槽结构,使得天线在3. 3 ~5. 35 GHz 频段产生陷波特性。该天线结构紧凑,尺寸仅为20 mm×25 mm×1. 0 mm。建 立天线模型,并对其进行仿真和优化。研究表明,天线在WiMAX 频段、C 波段、数字微波通信、大容量微波通信和部 分WLAN 等多个频段产生良好的陷波特性,且在工作频段内有良好的性能和辐射方向特性。  相似文献   

12.
We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular‐ring‐shaped tuning stub that can be deployed in ultra‐wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band‐notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L‐ and J‐shaped parasitic elements. The antenna characteristics can be modified to tune the band‐notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L‐ and J‐shaped parasitic elements also provide the band‐rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.  相似文献   

13.
In this article a microstrip-fed mickey shaped monopole antenna with triple notched band characteristics for ultra-wideband applications is presented. By etching two slots in the ground plane, improved VSWR bandwidth is achieved. Mickey shape radiating patch provides 10 dB return-loss bandwidth from 3.10 to 10.60 GHz. By etching three simple C-shaped slots on the radiating patch, three existing wireless communication systems which interfere with UWB band is removed which includes WiMAX IEEE802.16 (3.30–3.80 GHz), WLAN IEEE802.11a/h/j/n (5.15–5.35, 5.25–5.35, 5.47–5.725, 5.725–5.825 GHz) and X-band downlink satellite system (7.1–7.9 GHz). Experimental results reveal that the proposed antenna exhibits desirable radiation patterns in the far field, resulting omnidirectional like pattern in the H-plane and nearly dipole like pattern in the E-plane.  相似文献   

14.
In this paper, a novel multiple slot loading technique is studied in detail for the isolation enhancement of the dual‐band MIMO antenna system. The proposed MIMO antenna design consists of the microstrip patch loaded with T‐shaped slots parallel to the non‐radiating edge of the patch. The frequency tuning could be achieved by varying the length of the T‐shape slot arm. The proposed MIMO antenna system is optimised for operation in WLAN and WiMAX applications. The isolation enhancement is achieved by providing simple multiple slots loaded in the ground plane between radiating elements. The length of the slots is λ/4 . The system is fabricated and tested using a vector network analyser and anechoic chamber. The reduction in mutual coupling up to ?29.16 dB and ?24.09 dB for the 2.4 GHz and 3.4 GHz, respectively, is achieved. The bandwidths are 62.3 MHz (3.33–3.39 GHz) and 55.5 MHz (2.37–2.42 GHz), respectively. The total gain obtained in this case is 1.8 dBi at 2.4 GHz and 1.2 dBi at 3.4 GHz, respectively. The dimensions of the proposed designed antenna are 70 mm × 60 mm × 1.6 mm. The results were also verified through mutual coupling parameters like envelope correlation coefficient (ECC) and channel capacity loss (CCL) at the desired frequencies.  相似文献   

15.
In this paper, an ultra-wideband (UWB) antenna with dual band-notched characteristics is proposed. The proposed antenna also covers ISM (Industrial, Scientific, and Medical)/Bluetooth band. The antenna consists of a microstrip fed truncated U-shaped patch, T-shaped stub, rectangular mushroom type electromagnetic band gap structures (EBG), and partial ground plane. To mitigate the problem of interference due to standard narrow bands (like wireless interoperability microwave access (WiMAX) and wireless local area network (WLAN)) lie in the range of UWB, dual band notched characteristics is introduced. The WiMAX and WLAN band notched characteristics are realized by introducing a T-shaped stub and rectangular mushroom type EBG structures, respectively. The proposed antenna is printed on a 1.6 mm thick FR4 substrate with relative permittivity \((\upvarepsilon _{\mathrm{r}})\) 4.4 and the size of actual antenna is \(36 \times 40\hbox { mm}^{2}\) . The measured results shows that the proposed antenna attains a wide impedance bandwidth \((\hbox {VSWR} \le 2)\) from 2.35 to 11.6 GHz with dual band notched characteristics from 3.29 to 3.9 GHz and 5.1 to 5.85 GHz with stable radiation patterns. The time domain behaviors of the proposed antenna is also analyzed for pulse handling capability.  相似文献   

16.
文中提出了一种单馈的宽带贴片天线应用于无线局域网络通信。该天线由方形贴片、电抗性阻抗表面以及电磁带隙结构组成。文中提出同时加载电抗性阻抗表面和电磁带隙结构能够实现小型化以及宽带化。电抗性阻抗表面作为接地平面能够降低天线的谐振频率。电磁带隙结构能够提高天线的阻抗带宽。测试结果表明所提出的WLAN贴片天线的相对带宽为22.3%(S11=-10 dB),覆盖4.77~5.97 GHz,可以获得6.3~7.2 dBi增益。与现有宽带小型化天线相比,该天线在保证宽带小型化的前提下仍具有较高增益,且辐射性能具有较高的一致性,十分有利于其应用。该天线能够覆盖IEEE 802.11a标准所规定的5 GHz频段,能够实现无线局域网之间的高速数传。  相似文献   

17.
In this paper, a compact microstrip line fed dual-wideband printed monopole antenna (PMA) for wireless communication applications is presented. The proposed antenna consists of an asymmetric rectangular patch via a microstrip-fed line, an ohm (Ω) shaped DMS loaded at the rectangular patch, and dual semi-circular shaped DGS embedded in the partial rectangular ground plane. The combination of an ohm shaped DMS and two semi-circular DGS is used to broaden the bandwidth of the two bands and improve the return loss for the desired antenna. The measured 10 dB bandwidth for return loss are achieved to be 21.52% (3.40–4.22 GHz) and 47.32% (5–8.1 GHz) in the lower and upper band, respectively which covers the bandwidth requirements of 5.2/5.8 GHz WLAN and 3.5/5.5 GHz Wi-MAX application bands. Furthermore, the proposed antenna has a very simple planar structure and occupies a small area of only 621 mm2 (23 mm × 27 mm). The proposed antenna has a desirable VSWR level, radiation pattern, radiation efficiency and gain characteristics which are suitable for wireless communication applications.  相似文献   

18.
ABSTRACT

A single fed monopole antenna for circularly polarised quad-band applications is presented. The antenna radiator is comprised of half ring-shaped arcs integrated with the 50Ω microstrip feed line. In the proposed design, the circular polarisation is achieved by means of integrating ring, stubs and implanting an open-ended C-shaped slot in the ground surface. The designed antenna has a ?10 dB impedance bandwidth in the range of 2.41 GHz to 4.14 GHz and 4.34 GHz to 6.33 GHz. The 3-dB axial ratio bandwidth varies from 3.01 to 3.21 GHz, 3.46 to 3.79 GHz, 4.53 to 4.68 GHz and 5.08 to 5.10 GHz, therefore, exciting four circularly polarised bands. The proposed antenna covers almost all the IEEE 802.11 and IEEE 802.16 standards and may be a suitable candidate for WLAN and WiMAX applications. The optimisation of the designed antenna is conducted using tool Ansys HFSS and found simulated results in a good match with measured results.  相似文献   

19.
Triple band-rejection MIMO/Diversity UWB antenna characteristics are described in this paper. Proposed antenna discards worldwide interoperability for microwave access WiMAX band from 3.3 to 3.6 GHz, wireless local area network WLAN band from 5 to 6 GHz and X-Band satellite downlink communication band from 7.1 to 7.9 GHz. Mushroom Electromagnetic Band Gap (EBG) structures helps to attain band notches in WiMAX and WLAN bands. Uniplanar plus shaped EBG structure is used for notch in X-band downlink satellite communication band. Decoupling strips and slotted ground plane are employed to develop the isolation among two closely spaced UWB monopoles. The individual monopoles are 90° angularly separated with stepped structure which helps to reduce mutual coupling and also contributes towards impedance matching by increasing current path length. Mutual coupling magnitude of more than 15 dB is found over whole UWB frequency range. The Envelope Correlation Coefficient is less than 0.02 over whole UWB frequency range.The variations in the notched frequency with the variations in mushroom EBG structure parameters are investigated.The antenna has been designed using FR-4 substrate and overall dimensions is (64 × 45 × 1.6) mm3.  相似文献   

20.
A compact dual band-notched Ultra-wideband (UWB) circular monopole antenna that has two parasitic resonators in the ground plane is presented in this paper. The Inverted–U and Iron shaped parasitic resonators are located on the back side of the radiating patch to achieve the band rejection characteristics from 5 to 5.4 GHz for WLAN and 7.8 to 8.4 GHz for ITU band respectively. By cutting a rectangular slot on the ground plane, additional resonance is excited at the higher frequency band, and hence much wider impedance bandwidth can be attained. Applications of the proposed dual band-notched ultra-wideband (UWB) antenna structure with 5.2 GHz and 8.2 GHz center frequencies are demonstrated experimentally. Measured and simulated results of the magnitude of S11, radiation patterns and realized gains show good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号